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Because in situ techniques for determining vegetation even when applied to areas of low vegetation cover, the
SMA approach correctly determined the sense of changeabundance in semiarid regions are labor intensive, they

usually are not feasible for regional analyses. Remotely (i.e., positive or negative) in 87% of the samples. SMA
results are superior to NDVI, which, although correlatedsensed data provide the large spatial scale necessary, but

their precision and accuracy in determining vegetation with live cover, is not a quantitative measure and showed
the correct sense of change in only 67% of the samples.abundance and its change through time have not been

quantitatively determined. In this paper, the precision Elsevier Science Inc., 2000
and accuracy of two techniques, Spectral Mixture Analy-
sis (SMA) and Normalized Difference Vegetation Index
(NDVI) applied to Landsat TM data, are assessed quanti- INTRODUCTION
tatively using high-precision in situ data. In Owens Val-

Regional measurements of semiarid vegetation abun-ley, California we have 6 years of continuous field data
dance are of great importance for identifying the effects(1991–1996) for 33 sites acquired concurrently with six
of climate variability and other natural or anthropogenic

cloudless Landsat TM images. The multitemporal re-
effects on the environment (Tueller, 1987; Woodwell et

motely sensed data were coregistered to within 1 pixel, al., 1984). Field measurements of abundance, while of
radiometrically intercalibrated using temporally invari- high quality, are limited in scope and scale, which limits
ant surface features, and geolocated to within 30 m. the feasibility of making regional assessments of change.
These procedures facilitated the accurate location of Satellite imagery provides the large spatial and temporal
field-monitoring sites within the remotely sensed data. scales necessary to address this fundamental perspective.
Formal uncertainties in the registration, radiometric However, there are some basic difficulties in using re-
alignment, and modeling were determined. Results show motely sensed data to study vegetation change. The first
that SMA absolute percent live cover (%LC) estimates involves extracting vegetation abundance from measures
are accurate to within 64.0%LC and estimates of change of radiance, which is seldom measured in the field by
in live cover have a precision of 63.8%LC. Furthermore, vegetation specialists. The two leading methods, Vegeta-

tion Indices (VIs) and Spectral Mixture Analysis (SMA),
attempt to overcome the inherent difficulties in using ra-
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et al., 1998). There is evidence, however, that NDVI is In this article we assess quantitatively the ability of
NDVI and SMA to extract meaningful vegetation abun-affected by soil color and is therefore not always compa-

rable across a heterogeneous scene (e.g., Major et al., dance information from Landsat Thematic Mapper (TM)
data from semiarid Owens Valley, California. We also1990; Elvidge and Lyon, 1985; Huete and Tucker, 1991;

Huete et al., 1985; Todd and Hoffer, 1998). Soil and discuss the methodologies required to incorporate ground-
based measurements with satellite based measurements.vegetation type normalized indices (Huete, 1988) give

results very similar to NDVI since they typically are con- For this study, we utilized field data that were carefully
measured at specific time periods spanning several years.strained to two reflectance bands (Lyon et al., 1998).

Nevertheless, NDVI has shown a reasonable correlation The linkage of these two multitemporal data sets pro-
vides an unique opportunity to analyze SMA- and NDVI-with vegetation abundance and other important ecologi-

cal parameters, such as leaf area index (LAI) and fraction derived estimates of vegetation cover and its change over
time. Many researchers have shown or suspected thatof photosynthetically active radiation, and thus continues

to be a commonly used indicator of vegetation parame- soil background and/or community type are the domi-
nant source of deviations between field and remote mea-ters in remotely sensed data.

The relatively new method of Spectral Mixture Anal- sures of vegetation abundance. With a multitemporal da-
taset it may be possible to show that despite constantysis (SMA) (e.g., Adams and Adams, 1984; Mustard and

Pieters, 1987) is a promising alternative because it is a deviations for specific regions through time, annual
change in abundance can be a very accurate and pre-physically based approach that produces an estimate of

fractional cover of green vegetation in remotely sensed cise measurement.
data. However, the precision and accuracy of SMA has
not been thoroughly tested in the field. Previous studies STUDY AREA AND SITE DESCRIPTIONS(Smith et al., 1990a; Sohn and McCoy, 1997) have com-
pared field measurements from a single date with satel- Owens Valley is a hydrologically closed basin in Eastern

California. The valley extends approximately 120 kmlite imagery collected from the same area. Their results
show correlation between satellite-derived vegetation from north to south and is bordered on the west by the

Sierra Nevada and on the east by the White-Inyo Rangeabundance and field data, but do not place rigorous esti-
mates on the precision and accuracy of the results. SMA (Fig. 1). The Sierra Nevada forms a rain barrier, effec-

tively blocking the valley from most easterly flowing win-has been applied to studies of land cover change (Adams
et al., 1995; Roberts et al., 1997). However, these studies ter storms and keeping median annual precipitation to

13 cm. Each spring and summer, however, abundantdo not quantitatively assess the precision and accuracy of
this method for measurements of change. runoff from melting Sierra Nevada winter snow flows

into the valley and recharges groundwater aquifers. As aGarcia-Haro et al. (1996) used SMA and NDVI to
measure vegetation abundance from laboratory reflec- result, the groundwater table on the valley floor is typi-

cally high (Hollett et al., 1991).tance spectra of controlled mixtures of soil and vegeta-
tion. Both NDVI and the SMA vegetation fractions cor- Owens Valley straddles the boundary between the

Great Basin and Mojave Deserts. The valley can be di-related significantly with laboratory measurements of
LAI, but they concluded that the derived abundance of vided into alluvial fan, a gently sloping region with deep

water tables and dominated by xeric species, and valleyvegetation from SMA was less sensitive to soil back-
ground than NDVI. Each method’s sensitivity to soil re- floor, a relatively large (61,500 ha), flat, high water table

basin dominated by phreatophytes. Although the vegeta-flectance of multiple soil types in natural conditions should
be tested. Garcia-Haro et al. (1996) found the accuracy tion has been broadly characterized as Desert Saltbush

Scrub (Kuchler, 1988) recent vegetation mapping efforts,of mixture model vegetation fraction images to be suffi-
cient for many applications with actual satellite data, but described by Inyo County and City of Los Angeles (1990),

list several scrub and meadow plant communities as oc-they did not use any satellite or field data in their experi-
ments, leaving the problem open to further studies. curring in the valley, as well as a few riparian and marsh

communities. Plant community descriptions follow Hol-A second challenge in measuring vegetation change
arises when comparing field point measurements with the land (1986).

A monitoring network of 33 permanent field siteslarge-scale data acquired by remote sensing systems. In
many of the studies discussed above, variables other than was used in this study. All sites were located in phreato-

phytic vegetation on the valley floor. The dominant spe-the capability of the mixture model or NDVI in dealing
with complex data sets are cited as the major sources of cies at the sites included two perennial grasses, saltgrass

(Distichlis spicata) and alkali sacaton (Sporobolus airoides)error. Precise georeferencing and coregistration of im-
ages and the accurate identification of field sites in all and three shrub species: Nevada saltbush (Atriplex lenti-

formis ssp. torreyi), rabbitbrush (Chrysothamnus nauseo-images are essential components of multitemporal analy-
sis. Coregistration in particular has been shown to be an sus), and greasewood (Sarcobatus vermiculatus) (nomen-

clature follows Hickman, 1993). All dominants beginimportant contribution to error in vegetation change
measurements (Duncan et al., 1993; Townshend, 1992). annual growth in spring and reach peak leaf area by early
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Figure 1. Location of the study area in Owens Valley, California. The distribution of the field sites across the valley floor
is indicated by the small triangles.

summer (Sorenson et al., 1991). Despite floristic similari- sensor has a pixel size of 28.5 m by 28.5 m, with six visi-
ties, there was a wide range in proportions of grasses and ble-infrared band passes and one thermal band. Data of
shrubs at the sites, and some sites had a high percentage Owens Valley were taken from path 41 and shifted 30%
of annual forb species. Average percent live cover (1991– from row 34 to row 35. The large Landsat scenes were
1996) ranged from 5% to nearly 50% (Table 1). then reduced to data sets including only the valley itself:

2,42535,825 pixels each. All of the data sets were se-
lected from relatively cloud-free scenes acquired duringDATA ACQUISITION
late summer or early fall of each year. September was

Image Data and Preprocessing the preferred acquisition month because it ensured that
spring ephemeral species were avoided and perennialFourteen Landsat Thematic Mapper images were ac-

quired from 1984 to 1997 (Table 2). The Landsat TM species had completed their seasonal growth, but had not
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Table 1. Permanent Monitoring Sites

Monitoring Site Code Dominant 1 Dominant 2 Grass (%)a Shrub (%)b Weed (%)c Ave % LCd

Bairs-Georges 2 BG2 ATTO SAVE ,1 100 ,1 18.26
Bairs-Georges Control BGC ATTO DISP 3 97 ,1 18.16
Big Pine 1 BP1 ATTO SAVE 2 91 7 17.27
Big Pine 2 BP2 ATTO CHNA ,1 100 ,1 15.67
Big Pine 3 BP3 SAVE SPAI 8 91 1 9.33
Big Pine 4 BP4 ATTO SAVE ,1 100 ,1 18.11
Bighop Control 1 BC1 ATTO CHNA 12 88 ,1 22.46
Bishop Control 2 BC2 CHNA DISP 24 75 ,1 23.01
Bishop Control 3 BC3 DISP CHNA 53 37 ,1 32.24
Independence Control 1 IC1 ATTO CHNA 3 97 ,1 20.41
Independence Control 2 IC2 SPAI ATCO 67 32 1 5.59
Independence-Oak 1 IO1 SPAI ATTO 34 66 ,1 24.60
Independence-Oak 2 IO2 ATTO ATCO ,1 98 2 11.83
Laws 1 L1 SAVE DISP 1 66 33 5.09
Laws 2 L2 SPAI SAVE 44 55 ,1 10.33
Laws 3 L3 SPAI ATTO 80 17 2 21.41
Symmes-Shepherd 1 SS1 ATTO SAVE ,1 100 ,1 11.13
Symmes-Shepherd 2 SS2 ATTO N/A ,1 98 2 13.57
Symmes-Shepherd 3 SS3 ATTO N/A ,1 92 8 13.07
Symmes-Shepherd 4 SS4 ATTO N/A ,1 100 ,1 15.47
Taboose-Aberdeen 1 TA1 SPAI ATTO 44 12 44 6.99
Taboose-Aberdeen 2 TA2 ATTO SAVE 19 81 1 15.77
Taboose-Aberdeen 3 TA3 SPAI ATTO 27 73 ,1 14.57
Taboose-Aberdeen 4 TA4 SPAI CHNA 64 32 5 12.63
Taboose-Aberdeen 5 TA5 SPAI SAVE 35 66 ,1 4.99
Taboose-Aberdeen 6 TA6 SPAI CHNA 21 71 8 23.00
Taboose-Aberdeen Control TAC ATTO SPAI 52 29 16 48.95
Thibaut-Sawmill 1 TS1 SPAI ATTO 39 56 4 26.90
Thibaut-Sawmill 2 TS2 SPAI ARTR 47 41 10 10.28
Thibaut-Sawmill 3 TS3 SPAI ATTO 87 13 ,1 21.36
Thibaut-Sawmill 4 TS4 SAVE ATTO 23 77 ,1 25.35
Thibaut-Sawmill 6 TS6 SPAI DISP 60 28 12 19.51
Thibaut-Sawmill Control TSC SPAI CHNA 65 34 ,1 8.58

a Sporobolus airoides (SPAI) and Distichlis spicata (DISP).
b Atriplex lentiformis ssp. torreyi (ATTO), Chrysothamnus nauseosus (CHNA), Sarcobutus vermiculatus (SAVE), and Atriplex confertifolia (ATCO).
c Species that tend to proliferate in distinct patches. Includes invasive exotics (Salsola tragus, Bassia hyssopifolia) and native opportunistic species

(Glycyrrhiza lepidota, Conyza sp., Cleome sp.).
d Average live cover from 1991 through 1996.

begun to senesce in response to freezing temperatures early coregistered to the corresponding 1992 box
(Sorenson et al., 1991). Spring annuals are highly vari- with a determined goodness of fit, r2, between 0
able in their phenology and leaf cover, while shrub and 1. All regions with an r2 greater than 0.9
growth is seasonally more constant and therefore more (z7,000) were then used to perform a weighted
accurately captures yearly fluctuations in base-level vege- second-order geometric coregistration on the en-
tation abundance (MacMahon, 1988). Some scenes were tire image. The resulting images were coregis-
acquired during late August, while the 1985 scene was tered to well within 1 pixel in most areas and no
taken during the first week of October. worse than 2 pixels.

Three processing steps were completed on the 14 2. It is critical that the radiometric response of a
Landsat TM data sets: (1) coregistration; (2) spectral cali- given scene is comparable to that of every other
bration to temporally invariant surface features; and (3) scene. By performing spectral calibration, we as-
georeferencing of the dataset. These three steps are criti- sured that spectral differences among the images
cal to the success of all multitemporal remote sensing were due to fundamental change in surface char-
studies. acteristics and not due to changes in the atmo-

sphere, solar elevation and azimuth, and sensor1. Using a small number of ground-control points,
performance. There are several strategies avail-all images were first aligned with the 1992 image
able to achieve a common multitemporal spectralthrough a simple first-order translation. The
response. We applied the technique of temporallyaligned images were then partitioned into 32332

pixel subareas (boxes). Each subarea was then lin- invariant surface features (TISFs) (Hall et al.,
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Table 2. Dates of Landsat TM Acquisitions times and averaged for a spatial accuracy within
15 m. In addition to these data points, severalYear Day Month
tie-points were found near the edges of the im-

1984 1 August
age using 7.5-inch USGS maps of area. Finally,1985 7 October
15 more tie-points were identified by comparing1986 23 August

1987 29 September the Landsat database with previously georefer-
1988 13 September enced GIS layers from the Inyo County Water
1989 31 August Department GIS database. A combined set of 39
1990 3 September

tie-points were used to warp the dataset to a1991 22 September
UTM grid (North American 1927 datum) using a1992 8 September

1993 26 August third-order polynomial. A set of seven GPS loca-
1994 14 September tions and five test points selected from USGS
1995 17 September maps were held in reserve to test the georeferenc-1996 3 September

ing. Comparisons of these points against common1997 6 September
points in the images showed that georeferencing
was accurate to within 2 pixels (60 m) throughout
the scene, but much of the valley was within 1

1991; Schott et al., 1988). TISFs are regions of a pixel (30 m).
scene that are assumed not to change spectrally
over the sequence of scenes to be corrected. The Field Data
method is based on two fundamental assump-

The 33 permanent monitoring sites were fully imple-tions: (1) the radiometric response of the instru-
mented by 1990. From 1991 through 1996, water tablement is linear, and (2) all variations due to envi-
depth and soil water content were recorded monthly atronmental variables can be accommodated by a
these sites, and vegetation conditions were measuredlinear slope and intercept correction. Four TISF
during the last two weeks of June (mid growing season)locations were selected. Lava flows with little to
and the last two weeks of August (late growing season).no vegetation were chosen as a dark invariant fea-
Vegetation was measured along a permanently markedture. Small, isolated playas on the valley floor
100-m transect using a large point frame (Sorenson etwere chosen for a bright invariant feature. Two
al., 1991). A 100-m tape was stretched between the twosites of intermediate albedo were chosen from al-
transect end posts, and the point frame was positionedluvial fans on the eastern side of the valley. Al-
along the tape beginning at the zero post. Pins were low-though these two fan sites had a small compo-
ered at 30-cm intervals along the entire length of thenent of vegetation (,3%), the surfaces were in
transect. At each measurement point, the identity of thean area of very little rainfall and were composed
first species contacted with a pin, total contacts with allof drought-resistant species. Thus the surfaces
species, and ground cover (litter or bare ground) werewere expected to change very little over the 14
recorded.years of this study. In multitemporal, multiband

Percent live cover (%LC) at each transect was calcu-scatter plots, these four TISFs always fell on a
lated by dividing the number of pins that contacted livestraight line, supporting assumptions of no change
plants by the total number of pins used (334). Becauseat all of the sites. Each band from each image
the transect was run only once at each measurementwas regressed against the corresponding band
time, the error in the measurement cannot be calculatedfrom the 1992 image, a line was fit to the points,
directly. However, previous trials to assess this error byand all images were then adjusted to have the
running six point frame transect replicates at three dif-same spectral response as the 1992 data set. The
ferent sites showed an average error of any one measure-1992 data set was used as a reference for this
ment to be 62.3%LC (e.g., 10.262.3%LC or 15.66procedure because it was cloudless and tempo-
2.3%LC). These uncertainties are due in part to operatorrally near the middle of the total data set.
error and variations produced by wind movement of veg-3. An accurate georeferencing of the dataset was
etation during a measurement.performed by recording the latitude and longi-

tude of 18 different locations with a Global Posi-
tioning System (GPS) (Garmin 12XL) spanning METHODS
Owens Valley and neighboring Fish Lake and Eu-

Spectral Mixture Analysisreka valleys. In general, road intersections were
The materials in a given picture element (pixel) in re-used as GPS points since it was possible to locate
motely sensed data are rarely represented by a singlethem in the image. These GPS points were not

differentially corrected, but measured multiple physical component. This is particularly true in arid and
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semiarid regions where the distribution of soil and vege- the sum of the fractions to equal unity; however, there
tation is highly variable. SMA is based on the concept is no constraint that the fractions must be between 0.0
that the relative proportion of a few spectrally distinct and 1.0. In a strict sense, fractions outside the range of
components is what dominates the variance across a 0.0–1.0 are physically impossible. However, an additional
given remotely sensed scene. The concept of the mixed constraint that fractions fit this range can lead to errone-
pixel has been recognized for many years (Horowitz et ous results. A properly constructed mixture model should
al., 1975; Graetz and Gentle, 1982; Pech et al., 1986; return fractions that sum to 1.0 and lie between 0 and
Singer and McCord, 1979; Adams and Adams, 1984), 1.0 without any constraint (e.g., Mustard and Pieters,
and the development of an end-to-end understanding 1987; Mustard and Pieters, 1989). The unity constraint,
and model has led to quantitative applications (e.g., Mus- however, tends to stabilize solutions. Additionally, allowing
tard and Pieters, 1987; Adams and Adams, 1984; Adams individual fractions outside the range 0.0–1.0 provides
et al., 1986; Adams et al., 1993; Gillespie et al., 1990). important information on the validity of endmember se-
SMA has been used to measure %LC of vegetation in lection (see below). Equation (3) is the total root-mean
several studies of semiarid regions with mixed results square error (RMSE) where B is the total number of
(e.g., Smith et al., 1990a; Sohn and McCoy, 1997). spectral bands.

In linear SMA, the spectral properties of a pixel are An important behavior of SMA is its invariance un-
modeled as a linear combination of endmember spectra der linear transformations. Linear transformations of a
weighted by the percent ground coverage of each end- dataset, such as reflectance retrieval, do not change the
member. Endmembers are fundamental physical compo- linear addition of endmembers as long as the same linear
nents of the scene that themselves are not mixtures of transformations are performed on the endmembers be-
other components. The assumption of a linear model re- fore the analysis. This feature makes reflectance retrieval
quires that components be arranged in spatially separate unnecessary when using image endmembers because the
areas of the pixel (Singer and McCord, 1979). This con- exact same results will be achieved regardless of this pre-
figuration reduces the number of multiple reflections, processing step.
which are more common when mixtures of endmembers
are on the scale of the wavelength of electromagnetic ra- Endmembers
diation detected. Most arrangements of physical materi- The key to a successful mixture model is the selection
als will produce a nonlinear component (Johnson et al., of appropriate endmembers. Endmembers must define a
1983; Mustard and Pieters, 1989). Nonlinear mixing coherent set of spectra that are representative of physical
models have been used successfully with a variety of veg- components on the surface, but they also must model
etation types (Borel and Gerstl, 1994; Ray and Murray, the spectral variability inherent to the scene. Candidate
1996). However, the linear approach used here has been image endmembers were used in trial runs of the model
shown in many applications to have sufficient accuracy to defined by Eqs. (1), (2), and (3). The validity of the end-
map vegetation abundance in remotely sensed data (e.g., members is assessed by analyzing the fraction and
Adams et al., 1993; Pech et al., 1986; Roberts et al., RMSE results. The fractions calculated across the scene
1993; Smith et al., 1990a; Smith et al., 1990b). should lie between 0 and 1 while the RMSE should be

Endmember spectra selected from the image were uniform and close to the measurement precision of the
used in the following equations. These equations were data (61–2 DN). Images of the fractions and RMSE will
solved for every pixel in all 14 images [see Eq. (1), Eq. show spatial features where the variability of the scene
(2), and Eq. (3)]: is not adequately expressed by the linear addition of the

candidate endmembers. If this was the case for an im-DNb5o
N

i51
FiDNi,b1Eb (1)

portant area of the valley floor or bajada in any of the
14 images, new endmembers were selected and the

o
N

i51
Fi51 (2) model run again. However, poor model results for sur-

faces outside the scope of this research (e.g., agricultural
fields, high altitude regions) were not considered.

RMSE5!o
B

i51

(Ei)2

B
(3) In Owens Valley, vegetation, two soils, and shade (to

account for illumination effects) were chosen to repre-
sent the spectral variability. When the model was run,where DNb is the intensity of a given pixel in band pass
these endmembers explained the greatest percentage ofor wavelength b, Fi is the fractional abundance of end-
the scene variance. Our endmembers (Fig. 2) were takenmember I, DNi,b is the intensity of image endmember I
from the image (image endmembers) as opposed to ref-at wavelength b, N is the number of endmembers, and
erence endmembers, which are formed from reflectanceEb is the error of the fit for band pass b. Thus, for this
measurements usually made in the laboratory (Adams etanalysis with TM data, there will be six equations, one

for each spectral band (B56). Equation (2) constrains al., 1993). While reference endmembers would have un-
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Figure 2. Endmember spectra used in the spectral mix- Figure 3. Field spectra (of major species in Owens Val-
ture analysis. ley) converted to TM band pass. Spectra were acquired

from dense shrub canopy using an Analytical Spectral
Devices portable field spectrometer.

doubtedly represented a more pure endmember spectra cal component of the scene, shade accounts for illumina-
tion effects on the sub- and multipixel scale. Shade alsoand possibly would have given a more accurate absolute
accommodates some variations in reflectance due to soilabundance, image endmembers simply produce a differ-
brightness. Because a deep clear lake reflects very littleent scaling and thus can be used for change detection.
in all TM bandpasses, a large reservoir located near theThe decision to use image endmembers also allowed us
geographic center of the valley was used. Postprocessing,to bypass reflectance retrieval, which is secondary in im-
the vegetation fraction image can be normalized to re-portance to intercalibrating for change detection.
move the shade component, such that the remainingThe vegetation endmember was selected from a ri-
endmembers sum to one for each pixel (Adams et al.,parian area near the Owens River. While this vegetation
1993). This procedure is desirable where shade is nega-is different in species, life form, and leaf morphology and
tively correlated with vegetation and soil fraction images.height (i.e., structure) from the typical vegetation in the
However, in our experience, the shade fraction imagevalley, it was necessary to select an area that approxi-
was often positively correlated with soil brightness andmated 100%LC. At the low spectral resolution of Land-
therefore artificially elevated the live cover in these areassat TM data, most Owens Valley vegetation spectra share
when a scaled vegetation fraction image was calculated.a common set of spectral features (Fig. 3).

The single endmember set shown in Fig. 2 is usedA light soil endmember was chosen from the bright
across the entire suite of 14 images. Along with goodplayas in the southern part of the valley. Soils on the fans
spectral calibration, using identical endmembers to ana-and dry parts of the valley floor have a similar high re-
lyze multitemporal scenes strengthens the change analy-flectance. A dark soil endmember was chosen from an
sis because it assures that for surfaces that have notarea in which the soil was high in organic content. Such
changed, any given endmember abundance in one imagesoils, mollisols (meadow soils) and histosols (marsh soils),
will be the same endmember abundance in another im-are typically found on the western side of the valley
age. Conversely, changes that we detected should be awhere groundwater historically vented in natural springs
direct function of changes in the relative aerial coverageor seeps. This endmember was chosen from an aban-
of materials represented by endmembers.doned agricultural field during a year of low precipita-

tion, and therefore had less than 3% vegetation. Because
Vegetation Indicesof the spectral contrast of vegetation, the vegetation frac-

tion images changed very little with changes in soil end- Vegetation indices (VIs) take advantage of vegetation’s
member selection. reflective contrast between the near infrared (NIR) and

visible red (VIS) wavelengths. NDVI is given by Eq. (4):The final endmember was shade. While not a physi-
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linear grouping of pixels (e.g., 231, 331, and 332)
NDVI5

NIR2VIS
NIR1VIS

(4) could be affected by registration. In addition, orientation
and location of linear groups would be problematic

Because NDVI can be affected by soil reflectance across all of the sites. Thus it was determined that a 232
(Huete et al., 1985; Elvidge and Lyon, 1985), soil ad- pixel group provided the optimal size to match the satel-
justed VIs have been developed to take into account the lite to the field measures. Nevertheless, in choosing a
local soil reflectance. However, these VIs were found to 232 pixel group to represent the 100-m transect line, we
be highly correlated to NDVI such that the choice of one are making the assumption that the heterogeneity within
VI over another essentially resulted in a scaling of NDVI the 60 m by 60 m area is representative of the heteroge-
(Lyon et al., 1998). For the purpose of this analysis, we neity within the sampled transect. We feel that this is
compared NDVI to the results of SMA, recognizing that a safe assumption based on air photos and visits to the
other VIs will exhibit similar relationships. field sites.

Before our calculations of NDVI were completed, An example of how these different types of data can
the same preprocessing steps as with the SMA procedure be used to find the field site in the Landsat dataset is
were performed. As an additional step, field spectra of illustrated in Fig. 4. On the right is an airphoto of the
homogeneous dark, medium, and light soils were used to IO1 field site. The photo shows how heterogeneity of
convert the radiance of the NIR and VIS bands to reflec- vegetation cover and roads can make it difficult to find
tance using an empirical line method (Roberts et al., pure pixels of the transect vegetation unit. The image on
1993). Reflectance retrieval resulted in NDVI values the left is a 1992 Landsat TM scene, Band 2, for the
comparable to values found in the literature thus aiding same area as the photo. Overlaid on this image are GIS
in comparison to other work.

layers of roads (white), the 100-m transect line (black),
a box outlining the 939 sample space (black), and theMerging Field and Remotely
optimum 232 sample box identified to represent theSensed Measurements
field site (light gray). From this figure it appears that

Differences in spatial and temporal scale between the there are several possible positions of the 232 sample
field and satellite measurements present difficulties in box that could represent the 100-m transect line. How-
making quantitative comparisons between them. To in- ever, using all of the data available, the box presented in
corporate the Owens Valley field data, it was necessary Fig. 4 was the best choice.
to determine which specific pixels in the TM data best The percent live cover measured in the field each
matched the ecological unit represented by the 100-m August was compared with the corresponding measure-
transect. A combination of techniques were used to es- ment made from the Landsat TM data for each site.
tablish this relationship: With 33 field sites and 6 years of observations, this corre-

1. The GPS location of the field site coupled with sponds to 198 measurements. When forming the correla-
precision georeferencing of the satellite data. tion model, a stratified random subset of the 33 field

2. GIS layers of roads, canals, and vegetation poly- sites was used. Hypotheses formed and statistical values
gons to identify features in the images. calculated (such as correlation coefficients) were then

3. Aerial photos (1:12,000 scale) to link the TM im- tested by applying the same methods to the reserved
agery to visible features of the sites. sites.

4. Site visits to record key surface features. A land
unit was delineated that apparently encompassed Sources of Error
an area of homogeneous land cover with regard There are three main sources of error that contribute to
to species composition, density, and soil proper- the uncertainty in the multitemporal estimate of vegeta-
ties as that beneath the 100-m transect line. tion abundance from SMA and NDVI: (1) multidate reg-

5. Correlation and intercept statistics calculated for istration and field site location, (2) spectral calibration to
every pixel in a 939 pixel grid centered on the ground invariant points, and (3) mathematical error in
midpoint of the 100-m transect. The statistics the model. The error due to each of these sources were
were used to confirm that the edge of a road or added in quadrature to calculate the total uncertainty
other man-made object was never included in a of measurement.
pixel being considered for inclusion in the tran- The first and potentially largest source of error is
sect unit. due to missregistration of the multidate scenes and loca-

tion of the field sites. This source of error is calculatedOur goal was to identify the 232 pixel sample that
in the same way for both SMA and NDVI. Although co-best matched the physical location and vegetation unit
registration is better than 1 pixel in most areas and neverrepresented by each 100-m transect. Use of a single pixel
worse than 2 pixels, the degree to which this uncertaintyto target the transect was rejected due to potential ef-

fects of missregistration (discussed later). Likewise any in location affects our results is dependent on the homo-
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Figure 4. Example of methods used to locate permanent monitoring sites in the TM data. (a) GIS road (gray lines), stream,
and aqueduct coverages for site IO1 used to locate each monitoring transect (short black line) in the Landsat TM data. (b)
High resolution air photographs of the same site, which were used to refine the location. Boxes represent the same areas as in
Fig. 4a.

geneity of the scene at the field site. Therefore, to find appropriate image endmembers; however, pure pixels at
the scale of the TM data are rare and some contamina-standard error for a measurement of vegetation, we cal-

culate the standard deviation of all of the vegetation tion is likely. As a result, some SMA-calculated %LC
measurements are ,0 and .100%LC. In Fig. 5, we seeabundance within 1 pixel of the assumed location of the

site. This standard deviation is an estimate of the uncer- that there are five points that fall below zero. These
points must be accepted as inaccurate measurementstainty of the measurement within a 70% confidence in-

terval. These errors are site-dependent and range from due to impure endmembers.
0.5% to 4.0% live cover for SMA and 0.010 to 0.035
for NDVI. RESULTSThe accuracy of the radiometric calibration depends
on the spectral invariance of the four surfaces. To assess Vegetation Cover Measurements
the effect of noninvariant surfaces on the calculations, The correspondence between %LC determined with
we performed a sensitivity analysis on the slope and in- SMA and the 33 field sites for 1991 through 1996 (198
tercept of the ground invariant point regression. For measurements) is shown in Fig. 5a, while the correspon-
each dataset, the slope and intercept were each varied dence between NDVI and the field measures is shown
60.5%, 61.0%, or held constant. These represented a in Fig. 5b. In Fig. 5a, most of the points corroborate well
realistic range of values likely to result from small with the one-to-one line (mean bias is 2.29%LC), dem-
changes in surface properties. The model was run for onstrating excellent correlation between SMA and field
each permutation producing a Gaussian distribution of measures of %LC. Using the Kolmogorov-Smirnov
calculated vegetation estimates for SMA and NDVI. The (Davis, 1986) test, it was not possible to reject our
standard deviation of values calculated from these per- hypotheses that the SMA values are a Gaussian distribu-
mutations was found to be 1.06% live cover for SMA and tion about their calculated mean. Therefore, the uncer-
0.01 for NDVI. tainty in measuring absolute %LC using SMA was

The final source of error applies to the calculations 64.0%LC (one standard deviation from the mean). The
of SMA. Error in the SMA estimates of vegetation abun- distribution of points about the one-to-one line can be
dance is a function of the signal-to-noise ratio of the seen more clearly in Fig. 6. This histogram shows the
measurements and the spectral contrast of the endmem- number of points at each distance from the one-to-one
ber in question (i.e., vegetation) against the other end- line. While the distribution is narrow, the peak falls to
members in the inversion. This is a formal, model cer- the right of the center, indicating that there was an ag-
tainty and was determined to be 1.5%. gregate bias to measurements of absolute %LC.

The relationship between NDVI and %LC is moreIn addition to the above three sources of error, our
selection of endmembers influenced the derived SMA complicated (Fig. 5b). NDVI is also well correlated with

%LC; however, there appears to be slightly more scatterpercent live cover. We have taken care to select the most
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Figure 5. Percent live cover measured in the field (x axis) plotted against (a) SMA results and (b) NDVI.
Error bars were determined uniquely for each site as described in the text. For (a) lines at 64.0 and 8.0%LC
are shown about the 1:1 line.

in the relationship. Previous work has shown that both Comparisons of the variation of green vegetation
soil brightness and soil spectral effect can influence abundance with time determined with the remote mea-
NDVI (Huete et al., 1985) and that vegetation is overes- surements (SMA and NDVI) and field measurements
timated on dark backgrounds relative to bright back- provide some insight into the sources of scatter observed
grounds (Elvidge and Lyon, 1985). Also, at lower %LC, in Fig. 5. The IO1 field site (Fig. 7a) is an example
NDVI is dominated by the spectral slope of soils from where the SMA data closely resembles the field data. In
the visible to near-infrared. this figure, all field and satellite data are displayed. Sea-

sonal changes in percent live cover are observed in the
more frequently measured field data where June mea-

Figure 6. A histogram of the absolute %LC estimates
surements typically exhibited higher abundance than Au-from Fig. 5a showing the distribution of the data about
gust measurements. NDVI results also track the changesthe one-to-one line. Note that the distribution peak is

off center, indicating a bias. somewhat, but do not exhibit the direct correspondence
to the field %LC measurements.

Site SS3 demonstrated a different case where SMA
results generally track but were apparently offset from
the field data, suggesting a bias in the calculations. At
this site, the average bias is to underestimate field mea-
sures by 12%LC. Sites that exhibit a bias are temporally
constant in the magnitude and sign of the bias. This sug-
gests that the physical and ecological properties of the
site may contribute in a systematic way to create a bias
in the SMA results. Properties such as composition, the
dispersion of plants on the site, plant size and vigor, and
herbivore impacts are likely to be involved. However, we
have not yet identified the controlling factors. Data from
sites such as SS3 add to the variance of the data distribu-
tion in Fig. 5a because the data plot at a constant dis-
tance away from the one-to-one line. As with the IO1
site, NDVI tracked the changes in %LC, but it was more
difficult to quantify bias.

Because the bias shown in Fig. 7b is apparently a
property of the field site (and not, for example, a prop-
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Figure 7. Percent live cover as a function of time as measured in the field compared against SMA and NDVI
for two example monitoring sites. (a) Site IO1 shows excellent correlation through time with SMA results.
Field measurements were collected more frequently, hence seasonal changes in %LC can be seen while the
SMA and NDVI data shows only yearly changes. (b) Site SS3 illustrates an offset between SMA results and
the field data. This offset is relatively constant through time and can be attributed to characteristics of the
vegetation at the site. Note that NDVI tracks the general shape of change, but is sometimes incorrect in the
yearly direction of change. For this plot, standard NDVI values were scaled to be comparable in value to field
and SMA measurements.

erty of a single image), we can remove an estimate of is an additive normalization where the difference be-
tween the image and field data in 1991 is subtractedthis bias and normalize the SMA and NDVI data to a

single field measurement. The SMA and NDVI data nor- from every subsequent image measurement. As shown in
Fig. 8a for the SMA results, this process shifted the datamalized to the 1991 field data are shown in Fig. 8. This

Figure 8. Percent live cover determined from (a) SMA and (b) NDVI compared to field %LC after removing
the bias estimated as the difference between satellite and field values in 1991.
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Figure 9. Yearly changes in (a) SMA and (b) NDVI compared against yearly changes in field measures of
%LC. For (a) lines at 63.8 and 7.6%LC are shown about the 1:1 line.

cloud in Fig. 5a to a better fit within the one-to-one line. 1985). These issues will be discussed further in the dis-
cussion.NDVI does not demonstrate the same improvement with

The data distribution in Fig. 10 has roughly thenormalization (Fig. 8b) as more scatter is introduced and
same standard distribution as that in Fig. 6. This indi-therefore less of a correlation to the field data is ob-
cates that the measurement precision is nearly identicalserved.
for yearly change measurements as for absolute measure-
ments. However, the absolute measurement data distri-Measuring Change in Vegetation Cover
bution does not have the same accuracy as the yearlyYearly change detection is important for assessing vege-
change data distribution. This is demonstrated by thetation community health. To assess the correspondence
fact that the absolute measurements include a bias ofin the annual estimates of vegetation change between the
about 2.3 %LC from the one-to-one line while the yearlyfield and remote measurements, we subtracted from
change measurements fall directly over the one-to-oneeach %LC measurement the %LC calculated for the
line (Table 3).year preceding it. As shown in Fig. 9a, the SMA model

produced an excellent estimate of change in %LC: The
DISCUSSIONvalue of change calculated using SMA nearly equals the

value of change measured in the field. These values are Quantitative analyses of change with multitemporal re-
plotted in a histogram in Fig. 10 and show that the data motely sensed data must begin with careful attention to
cloud is centered on the one-to-one line. The mean dis- radiometric calibration and coregistration. The radiomet-
tance to this line is 0.70%LC. However, using the stan- ric methods used here provided a reliable and consistent
dard deviation of 3.8 %LC and an assumed mean value approach to achieving radiometric consistency across the
of 0.0 %LC, these data are consistent with a normal dis- 14 years of satellite data. It is preferable to achieve the
tribution (Kolmogorov-Smirnov test of normality). These same result using first principles (i.e., time, date, location
results showed that SMA accurately measured change in of measurement; atmospheric conditions). However, ap-
%LC and can be used to effectively monitor changes in proaches based on first principles have not yet achieved
semiarid vegetation. The NDVI data plots in a tighter the reliability and consistency of the empirical methods
cluster near-zero change than the SMA data (Fig. 9b), used here.
thus making it less useful for detecting change. A very Smith et al. (1990a) previously made the most robust
poor correlation coefficient of r250.25 was found for the comparison between SMA and field data. They showed
relationship between NDVI and field measures of %LC that SMA results correlated with field data with r2 values
(Table 3). As documented previously, the sensitivity of between 0.80 and 0.91. They used reference endmem-
NDVI to soil brightness may be contributing to the sen- bers as opposed to image endmembers; thus the vegeta-

tion endmember was a leaf spectra rather than a canopysitivity of NDVI to changes in greenness (Huete et al.,
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The comparison of field and remotely sensed data
for the same site over many years further supports the
hypothesis that bias between remote and field measures
are related to field conditions. When the SMA results are
reduced to a measure of annual change in %LC and
compared with the same measure in the field data, the
bias in the results were removed. However, the variance
of the results is largely unchanged (Table 3). Further re-
search may reveal whether the bias observed in using
SMA to directly measure %LC was primarily due to end-
member selection or if knowledge of vegetation and
community structure or soil background could be used
in refinements to this approach. Nevertheless, as demon-
strated here the change in %LC was accurately and pre-
cisely measured with SMA and TM data independent of
soil and vegetation community and/or structure vari-
ability.

Vegetation endmember selection impacts the corre-
spondence between the SMA results and field measures
of %LC. In this work, we chose an endmember from lo-
cal riparian vegetation; however, all of our field sites areFigure 10. Histogram of the absolute %LC estimates

from Fig. 9a show the distribution of the data about located in shrub and meadow communities. Therefore
the one-to-one line. Note that in this case the peak the small aggregate bias between field and remote mea-
falls more closely to the one-to-one line than in Fig. 6. sures of %LC might be due to this discrepancy between

the endmember canopy structure and that of the average
field site. To test this assertion, we chose several alterna-level spectrum. For vegetation, this resulted in an under-
tive vegetation endmembers from the Landsat datasetestimation of field measures of live cover (i.e., a slope
and completed SMA. In choosing alternative endmem-other than 1.0). Using these results as a benchmark, we
bers we were consistent in our constraint of only usinghave shown that image endmembers can be used to ob-
areas of high %LC: riparian zones, irrigated crops, andtain the same quality of result (our data in Fig. 5a has a
irrigated fields of natural vegetation.similar correlation of 0.88) (Table 3). The most signifi-

Different vegetation endmembers typically changedcant difference between the Smith et al. (1990a) data
the relationship found between SMA results and fieldand the data presented here is the slope of the regres-
measurements of %LC. Use of endmembers from irri-sion line between SMA results and field measures of live
gated areas, whether native or nonnative species, tendedcover. Smith et al. (1990a) detected a significant devia-
to underestimate the field measures of live cover to ation in slope from the one-to-one line, while our results
greater extent. This result is not surprising given theindicate a very close approximation to the one-to-one
large difference between the reflectance of an irrigatedline. Furthermore, Smith et al. (1990a) found a different
field in the VIS and NIR and that of natural semiaridslope for field sites containing primarily bajada vegeta-
shrub vegetation. These results also agree with the find-tion versus sites containing phreatophyte vegetation.
ings of Smith et al. (1990a), who used a reference leafThese two types of vegetation have different community
spectrum for a vegetation endmember. Spectra takenstructure and species, which supports our reasoning that
from irrigated fields always show a much stronger NIRthe slope depends on the structural properties of the
response than natural vegetation. However, multiplevegetation community. Other work shows that plant
endmembers taken from riparian vegetation showed astructure is the single most important factor influencing

canopy level reflectance (Asner, 1998). similar relationship to field measures, regardless of loca-

Table 3. Correlation Results

Measurement Type Mean distance to 1:1 line (%LC) Stdev about 1:1 line (%LC) Correlation Coefficient

SMA: absolute 2.29 3.95 0.88
SMA: normalized 1.39 3.80 0.91
SMA: yearly change 0.70 3.83 0.84
NDVI: absolute N/A N/A 0.83
NDVI: normalized N/A N/A 0.81
NDVI: yearly change N/A N/A 0.25
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tion. This type of vegetation, although different in struc- an inherent limitation of SMA applied to coarse spectral
ture and species type, was shown here to reasonably rep- resolution data. Part of the bias, however, is due to other
resent 100% cover of semiarid shrub vegetation. factors such as local vegetation community and structure.

The most significant limitation in using NDVI to Nevertheless, we have clearly shown that bias between
quantify change in %LC is the weak relationship be- remotely measured and field measured %LC can be sim-
tween changes in NDVI and changes in %LC. To quan- ply removed by focusing on the quantification of change.
tify vegetation abundance, NDVI must first be calibrated Thus, when the change in %LC is the key parameter to
to field measures of vegetation. Furthermore, problems be determined, SMA provides a very precise tool. Due
with soil-brightness effects on NDVI and other VIs have to the robust nature of this method, it is likely that these
been shown to interact in a complicated manner. Huete results could be extended to ecosystem and land cover
et al. (1985) showed that NDVI varied as much as 0.3 types different from those studied here. For studies that
with changes in bare soil NIR reflectance. Additionally, use this method in ecosystems other than semiarid, SMA
this effect was not consistent across different levels of is a precise tool in the measurement of changes in %LC.
vegetation %LC. For example, a change in live cover However, absolute measurements of %LC should be val-
from 40% to 60% over a soil NIR reflectance of 25% idated against field measurements.
will result in an NDVI change of 0.2, while the same NDVI is a simple and reliable measure of greenness
change over a dark soil (5% NIR reflectance) results in in remotely sensed data for a single date. While NDVI
an NDVI change of only 0.1. Therefore, background soil values showed a significant correlation to field measures
brightness directly and inconsistently affects the NDVI of vegetation, this relationship was less robust when sub-
measurement of changes in %LC. When many different sequent measurements were subtracted from each other
field sites are being used in the analysis, soil brightness to measure change. As discussed, we suspect that this ef-
can account for much of the scatter observed in relation- fect is largely due to the documented soil brightness ef-
ships like those in Fig. 9b. fects on NDVI (Huete et al., 1985). Qualitatively, NDVI

Studies that assume changes in NDVI relate linearly will generally show the proper sense of change in green-
with field measures of vegetation change lose precision. ness. However, the SMA results indicated the correct
We have shown that this point is significant, even when sense of change in a larger number of our samples and
large changes in field vegetation are being considered. gave precise estimates of the magnitude of that change.
Other studies (e.g., Purevdorj et al., 1998) have fit a sec- Vegetation communities in semiarid and arid regions
ond-order polynomial to plots of NDVI vs. field vegeta- are principally limited in their productivity by the avail-
tion measurements. These fits are significantly better ability of water. Thus significant changes in water avail-
than linear regressions. However, the obvious trade-off ability will be reflected in the growth and decline of
is a more complicated relationship that requires more these communities. The ability to precisely determine
data to constrain properly. In addition, these approaches percent live cover with remotely sensed data will have
have not been shown to be robust against multiple soil important applications to a range of problems in these
backgrounds and vegetation communities. regions including climate change and response to anthro-

The relationship between SMA and %LC was robust pogenic modifications. The results of this study establish
as the analysis proceeded from absolute values through critical limits on the precision and accuracy of vegetation
to an assessment of change. In contrast, the relationship abundance determined from Landsat TM data using
between field measurements of %LC and NDVI became SMA. Future work will now focus on understanding the
weaker. This trend is perhaps best illustrated in Fig. 9. causes of observed changes.
When assessing change in a landscape, it is equally im-
portant to get the correct magnitude and sense of change
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