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1  Executive Summary 

San Diego Gas and Electric Company’s (SDG&E) Summer Saver program is a demand response 

resource based on central air conditioner (CAC) load control.  It is implemented through an agreement 

between SDG&E and Comverge, Inc., and is currently scheduled to continue through 2016.  This 

report provides ex post load impact estimates for the Summer Saver program for 2011. 

The Summer Saver program is available to residential customers and commercial facilities with 

average monthly peak demand up to a maximum of 100 kW over a 12-month period.  The Summer 

Saver season runs from May 1 through October 31 and does not notify participating customers of 

events.  A Summer Saver event may be triggered if warranted by temperature and system 

load conditions.   

There are four enrollment options each for both residential and commercial customers.  Residential 

customers can choose to be cycled 50% or 100% of the time, and can have cycling occur only on 

weekdays or on weekends as well.  Commercial customers have an option of choosing 30% or 50% 

cycling, on weekdays only or for seven days a week.  The annual incentive paid for each option varies 

and is based on the number of CAC tons being controlled at each site.    

As of the end of 2011 there were 29,591 premises enrolled in the program, which in aggregate have 

152,137 tons of CAC capacity.  About 83% of participants were residential customers, who account for 

68% of the total tons of cooling that are subject to control under the program.  Roughly 53% of 

residential participants are on the 100% cycling option.  Approximately 63% of commercial customers 

selected the 50% cycling option over the 30% option.  Summer Saver enrollment is expected to stay 

roughly the same for the foreseeable future. 

In 2011 the program provided an average of about 18 MW of demand response over six events.  

Commercial customers provided an average of 3.7 MW, and residential customers provided about 14 

MW.  Due to weather and seasonal conditions, events in 2011 did not provide nearly the amount of 

demand response which could be expected under more severe heat.   

This is the first Summer Saver evaluation that has been performed using smart meter interval data 

exclusively.  The prevalence of smart meters in the Summer Saver population allows for results to be 

more representative of the entire Summer Saver population because load data is available for a much 

greater number of customers.  Using smart meter data also reduces the cost of evaluation because 

they do not require the expensive installation of CAC load loggers.  In the future, the implementation 

of a treatment-control design in conjunction with the use of smart meter data could provide for a 

highly streamlined evaluation process in which ex post impact estimates are available as soon as the 

smart meter data becomes available and ex ante estimates become available soon after the end of 

the summer. 

FSC recommends that more data be gathered in future program years on the different impacts of 

customers on different cycling strategies.  This could best be accomplished using an experimental 

protocol. The current data suggests that the different cycling options within each customer segment 

do not provide significantly greater load impacts despite customers on each option having similar 

overall CAC capacity.   If true, this would mean that the annual bill credits paid to participants either 
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over pay for customers on the more intensive cycling options or under pay those on the less 

intensive options. 
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2 Introduction and Program Summary 

SDG&E’s Summer Saver program is a demand response resource based on CAC load control.  It is 

implemented through an agreement between SDG&E and Alternative Energy Resources (AER), a 

subsidiary or Comverge,1 and is currently scheduled to continue through 2016.  This report provides 

ex post load impact estimates for 2011. 

Because of delays in the decision by the California Public Utilities Commission (CPUC) regarding the 

Demand Response Program applications by all three California investor-owned utilities and the 

resulting uncertainty in future program enrollment, this report does not contain ex ante load impact 

estimates.  Ex ante impact estimates will be developed following the Commission’s final decision 

regarding the DR Program applications. 

2.1 Program Overview 

The Summer Saver program is available to residential customers and commercial facilities with 

average monthly peak demand up to a maximum of 100 kW over a 12-month period.  For both 

residential and commercial customers enrolled in the program, events may be called between May 1 

and October 31.  Customers can elect to be eligible for events on weekdays only or on weekdays and 

weekends.  Events must be between 2-hours and 4-hours in duration and cannot be called for more 

than 40 hours per month or 120 hours per year.  Event days cannot include holidays or be called on 

more than three days in any calendar week.   

Summer Saver is classified as a “day-of” demand response program and does not notify participating 

customers when an event is being called.  SDG&E may call an event whenever the utility’s electric 

system supply portfolio reaches resource dispatch equivalence of 15,000 Btu/kWh heat rate, or as 

utility system conditions warrant.  A Summer Saver event may also be triggered as warranted by 

extreme system conditions, such as: special alerts issued by the California Independent System 

Operator; SDG&E system emergencies related to grid operations; conditions of high forecasted 

California spot market prices; or for testing or evaluation purposes.   

There are four enrollment options each for residential and commercial customers.  Residential 

customers can choose to be cycled 50% or 100% of the time during an event and can have cycling 

occur only on weekdays or on both weekdays and weekends.  The incentive paid for each option 

varies; the 50% cycling option pays $11.50/ton of CAC capacity and the 100% cycling option pays 

$46/ton.  The 7-day option pays an extra $10 compared to the weekday-only option.  Thus, a 

residential customer with a 4-ton CAC (which is close to the average) would be paid the following 

under each option: 

 $46 for the summer for the weekday, 50% cycling option; 

 $56 for the 7-day, 50% cycling option; 

 $184 for the weekday only, 100% cycling option; or  

 $194 for the 7-day, 100% cycling option.   

                                                           
1 SDG&E’s contract with Comverge was amended in 2007 to reflect that the agreement is thereafter recognized to be 

between a subsidiary of Comverge, AER, and SDG&E.  In this document, the company is referred to as Comverge for 

convenience. 
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Commercial customers have an option of choosing 30% or 50% cycling, on weekdays only or for 

seven days a week.  The incentive payment equals $9/ton for the 30% cycling option and $15/ton for 

the 50% cycling option.  As was true for residential customers, the incremental payment for the 7-day 

a week option compared with the weekday-only option is $10.  The average commercial participant 

has roughly nine enrolled tons of CAC (although some participants have significantly more).  As such, 

the incentive payment for the average commercial customer under each enrollment option is 

as follows: 

 $81 for the summer for the weekday, 30% cycling option; 

 $91 for the 7-day, 30% cycling option; 

 $135 for the weekday only, 50% cycling option; or  

 $145 for the 7-day, 50% cycling option. 

Enrollment in the Summer Saver program is summarized in Table 2-1.  As of November 2011, there 

are 29,591 customers enrolled in the program, which in aggregate had about 152,137 tons of CAC 

capacity.  About 83% of participants were residential customers who accounted for 68% of the total 

tons of cooling subject to control under the program.  Just over 53% of residential participants were 

on the 100% cycling option and roughly 63% of commercial customers were on the 50% cycling 

option.  Summer Saver enrollment is expected to remain roughly constant in the immediate future. 

Table 2-1: Summer Saver Enrollment, November 2011 

Customer 
Type 

Cycling 
Option 

Enrolled 
Customers 

Enrolled 
Control 
Devices 

Enrolled 
Tons 

Commercial 

30% 1,882 4,627 17,447 

50% 3,262 8,134 31,069 

Total 5,144 12,761 48,516 

Residential 

50% 11,375 13,360 46,456 

100% 13,072 15,961 57,165 

Total 24,447 29,321 103,621 

Grand Total 29,591 42,082 152,137 

2.2 Ex Post Load Impact Estimates 

Six Summer Saver events were called in 2011.  The events were each four hours long and began at 

either 1 PM or 2 PM.  Table 2-2 shows the load impacts (averaged across each event hour) for each 

2011 event day for residential customers and the ex post impact estimates from 2010 for comparison.  

In 2011, Summer Saver residential customers delivered an average aggregate load reduction over the 

six events of 14 MW.  Residential impacts ranged from a low of 6 MW on September 9, to a high of 19 

MW on September 7 and September 8.  A blackout began between 3 and 4 PM on September 8, 

limiting all load impact estimation for that day to the period 1-3 PM.   
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Table 2-2: Summer Saver Residential Ex Post Impact Estimates2 

Year Date 

Impact Average Temperature
3
 

Per CAC 
Unit (kW) 

Per Premise 
(kW) 

Aggregate 
(MW) 

Midnight-5 
PM 

During 
Event 

2010 

15-Jul-10 0.43 0.50 12 77 85 

16-Jul-10 0.58 0.67 16 80 88 

17-Aug-10 0.46 0.54 13 77 85 

18-Aug-10 0.58 0.68 17 80 87 

19-Aug-10 0.50 0.58 14 78 85 

23-Aug-10 0.52 0.61 15 77 87 

24-Aug-10 0.53 0.62 15 78 88 

25-Aug-10 0.46 0.54 13 78 85 

27-Sep-10 1.02 1.19 29 87 95 

28-Sep-10 0.52 0.61 15 80 84 

29-Sep-10 0.42 0.49 12 76 82 

Average 0.55 0.64 16 79 86 

2011 

26-Aug-11 0.34 0.41 10 77 85 

7-Sep-11 0.64 0.77 19 82 90 

8-Sep-11
4
 0.66 0.79 19 81 93 

9-Sep-11 0.20 0.24 6 69 73 

12-Oct-11 0.40 0.49 12 76 93 

13-Oct-11 0.62 0.74 18 78 89 

Average 0.48 0.57 14 78 87 

Table 2-3 shows ex post load impact estimates for commercial customers for each 2011 event day and 

ex post estimates for 2010 events for comparison.  Aggregate load impacts varied from a low of 

2.1 MW on September 9 to a high of 4.9 MW on September 8.  The highest impact for a full event, not 

interrupted by the blackout, was 4.4 MW on August 26. 

  

                                                           
2 Aggregate ex post estimates for 2010 have been revised to reflect two data processing corrections since the report was 

released.  Reported results for 2010 differ from those reported in the 2010 evaluation.  See Appendix C for comparison of 

previously reported values to corrected values. 

3 Average temperatures are calculated as a population weighted average of the temperatures experienced by Summer 

Saver customers, with temperatures determined by the reading at the customer’s nearest weather station. 

4 Ex post estimates for September 8 are only for 1-3 PM, the time before the blackout. 
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Table 2-3: Summer Saver Commercial Ex Post Impact Estimates5 

Year Date 

Impact 
Average 

Temperature
6
 

Per CAC 
Unit (kW) 

Per 
Premise 

(kW) 

Aggregate 
(MW) 

Midnight-
5 PM 

Event 

2010 

15-Jul-10 0.33 0.84 4.4 75 83 

16-Jul-10 0.36 0.93 4.9 77 85 

17-Aug-10 0.32 0.83 4.4 74 82 

18-Aug-10 0.36 0.92 4.9 77 84 

19-Aug-10 0.34 0.87 4.6 76 82 

23-Aug-10 0.32 0.84 4.4 74 84 

24-Aug-10 0.34 0.88 4.7 76 85 

25-Aug-10 0.33 0.85 4.5 75 82 

27-Sep-10 0.47 1.22 6.5 84 92 

28-Sep-10 0.36 0.94 5.0 79 83 

29-Sep-10 0.34 0.88 4.7 76 81 

Average 0.35 0.91 4.8 77 84 

2011 

26-Aug-11 0.34 0.89 4.4 76 82 

7-Sep-11 0.31 0.79 3.9 81 89 

8-Sep-11
7
 0.38 0.98 4.8 80 91 

9-Sep-11 0.16 0.42 2.1 68 71 

12-Oct-11 0.29 0.75 3.7 75 92 

13-Oct-11 0.26 0.67 3.3 77 86 

Average 0.29 0.75 3.7 76 85 

Table 2-4 shows ex post load impact estimates for the whole program for 2011. 

                                                           
5 Aggregate ex post estimates for 2010 have been revised to reflect two data processing corrections since the report was 

released.  Reported results for 2010 differ from those reported in the 2010 evaluation.  See Appendix C for comparison of 

previously reported values to corrected values. 

6 Average temperatures are calculated as a population weighted average of the temperatures experienced by Summer 

Saver customers, with temperatures determined by the reading at the customer’s nearest weather station. 

7 Ex post estimates for September 8 are only for 1-3 PM, the time before the blackout. 
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Table 2-4: Summer Saver Program Ex Post Impact Estimates 

Date 

Impact 
Average 

Temperature 

Per CAC 
Unit 
(kW) 

Per 
Premise 

(kW) 
Aggregate 

(MW) 
Midnight-

5 PM 
Event 

26-Aug-11 0.34 0.49 14.4 77 84 

7-Sep-11 0.54 0.77 22.9 82 90 

8-Sep-11
8
 0.57 0.81 23.9 81 92 

9-Sep-11 0.19 0.27 8.1 69 72 

12-Oct-11 0.37 0.53 15.7 76 93 

13-Oct-11 0.51 0.72 21.3 78 88 

Average 0.42 0.60 17.7 77 86 

 

2.3 Report Structure 

The remainder of this report is organized as follows.  Section 3 summarizes the data and 

methodologies that were used to develop the ex post load impact estimates and the validation tests 

that were applied to assess their accuracy.  Section 4 contains the ex post load impact estimates, an 

analysis of control device communication success and an analysis of the distribution of load impacts 

over customers.  Three Appendices contain further technical details and revised calculations for the 

2010 evaluation. 

  

                                                           
 

8 Ex post estimates for September 8 are only for 1-3 PM, the time before the blackout. 
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3 Data and Methodology 

This section summarizes the datasets and analysis methods that were used to estimate load impacts 

for each event in 2011.  The choice of ex post model has important implications for ex ante modeling, 

which means that ex ante modeling is often referred to even though ex ante results are not included 

in this report.  A separate report including ex ante results will be provided in a report to follow.  

Results from a variety of validation tests are also presented.      

3.1 Data 

In 2011, six Summer Saver events were called.  Table 3-1 shows the date of each event, and the start 

and stop time of each event.  All residential and commercial accounts were called for each event.  All 

events lasted four hours and began at either at 1 PM or 2 PM.  

Table 3-1: Summer Saver 2011 Event Summary 

Date Start Time End Time 

8/26/2011 2:00 PM 6:00 PM 

9/7/2011 2:00 PM 6:00 PM 

9/8/2011 1:00 PM 5:00 PM 

9/9/2011 2:00 PM 6:00 PM 

10/12/2011 1:00 PM 5:00 PM 

10/13/2011 1:00 PM 5:00 PM 

SDG&E provided FSC with samples of smart meter interval data for both the residential and 

commercial populations for the summer of 2011. The sample included data for 762 residential 

premises and 3,555 commercial premises.   The commercial sample encompassed the entire 

commercial Summer Saver population for which smart meter interval data is available.9   This is the 

first time the Summer Saver evaluation is being performed using only smart meter interval data; 

previous evaluations have relied on CAC logger data.  However, in evaluations of the 2009 and 2010 

program years, analyses of residential load impacts performed using smart meter interval data 

produced load impact estimates very close to those estimated using CAC logger data.  While these 

analyses were not performed for commercial customers, FSC does not believe that repeating the same 

process for the 2011 program year would not also produce similar results as those found using CAC 

logger data.  Additionally, FSC has extensive experience using smart meter data to estimate load 

impacts for CAC load control programs for other utilities; this method has always been found to 

produce impact estimates as accurate as those estimated based on CAC logger data.   

Tables 3-2 and 3-3 show the distribution of CAC tonnage by cycling option and climate zone for the 

populations and samples of commercial and residential customers, respectively, as of June, 2011.  As 

the tables show, each sample is representative of the population of participants.  The differences 

between the fraction of customers in each sample cell and each population cell are small; there are 

effectively no differences across climate zones, while small differences exist across cycling options.  

                                                           
9 The exact number of premises with data for analysis varied on a day-by-day basis, due to limitations on interval data 

availability. 
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Final results are weighted based on cycling option to reflect these slight differences between the 

sample and the population. 

Table 3-2: Distribution of AC Tonnage by Program Option and Climate Zone 
Residential Population 

Cycling and Weekday 
Options 

Group 
Climate 
Zone 1 

Climate 
Zone 2 

Climate 
Zone 4 

Total 

50% 
Population 3% 1% 42% 46% 

Sample 3% 1% 46% 50% 

100% 
Population 11% 1% 43% 54% 

Sample 11% 1% 39% 50% 

Total 
Population 14% 2% 85% 100% 

Sample 14% 2% 84% 100% 

 

Table 3-3: Distribution of AC Tonnage by Program Option and Climate Zone 
Commercial Population 

Cycling and Weekday 
Options 

Group 
Climate 
Zone 1 

Climate 
Zone 2 

Climate 
Zone 4 

Total 

30% 
Population 14% 0% 23% 37% 

Sample 14% 0% 23% 38% 

50% 
Population 32% 0% 31% 63% 

Sample 31% 0% 31% 62% 

Total 
Population 45% 1% 54% 100% 

Sample 45% 0% 55% 100% 

 

3.2 Methodology 

The primary task in estimating ex post event impacts is to estimate a reference load for each event.  

The reference load is a measure of what demand would have been in absence of the demand response 

event.  Although this report focuses on ex post estimation, the ultimate goal of the broader evaluation 

is to develop both ex post and ex ante load impact estimates.  Therefore, ex ante methods are 

discussed where relevant.  The primary task in estimating ex ante event impacts (which are often of 

more practical concern) is to make the best use of available data on loads and load impacts to predict 

future program performance.  The data and models used to estimate ex post impacts are typically 

major elements of the ex ante analysis.   

The primary source of information used in both the 2009 and 2010 evaluations of Summer Saver for 

reference load was load observed during non-event times.  This was significantly aided by the 

experimental design put in place for settling the demand response contract with Comverge.  Under 

this contract, a stratified, random load research sample of residential and commercial Summer Saver 
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customers was created.  During each event, half of the load research sample would be held back to 

provide reference load (i.e. those CAC units would not be controlled during the event).  Individual 

customer regressions performed well under these conditions because any given customer in the 

sample had several event periods during which their load could act as reference load because it was 

not curtailed.  Moreover, even if particular events were unique from all other event days (such as 

September 27, 2010, which was the hottest day of 2010 and the all-time SDG&E system peak), load 

from one half of the sample could be used to estimate the reference load for the other half in a 

treatment-control analysis rather than individual customer regressions.   

As compared to the two previous program years, the events in 2011 were more complicated to model 

because several of the event days had unique characteristics and because the experimental design for 

settlement with Comverge was corrupted.   These complications and the modeling decisions that 

resulted are discussed in Appendix A.  The result was that residential ex post impact estimates were 

developed using individual customer regressions, while commercial ex post impact estimates were 

developed using a day-matching approach.  Each is described below.   

3.2.1 Customer Regression Models for Residential Customers 

Each customer has a different usage pattern over time, and each customer’s usage is likely to respond 

differently to changes in weather.  For this reason, separate regressions were estimated for each 

premise in the residential sample,10 but using a common regression specification over all cases.  For 

all premises, the factors used to estimate usage patterns were weather variables interacted with time 

indicators.  These allow the model to take into account different reactions to weather conditions at 

different times of day, times of week and times of year.  For example, a residential customer’s energy 

usage might respond strongly to high temperatures on a Saturday afternoon when they are at home, 

but it might not respond at all on a Wednesday afternoon when they are at work. 

Only non-holiday weekdays were modeled because no events were called on either weekends or 

holidays, and weekend usage behavior is quite different from weekday usage. Table 3-4 defines the 

variables and describes the effects they seek to identify.  The regression specification was: 

 

                                                           
10 As discussed in Appendix A, this regression specification was also estimated for commercial units but the results were 

not ultimately the ones chosen. 
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Table 3-4: Description of AC Load Regression Variables 

Variable Description 

 Estimated constant 

 Estimated parameter coefficients 

 
Indicator variables representing the hours of the day, designed to estimate the effect of daily schedule 
on usage behavior and event impacts 

 Indicator variable for the month 

 Indicator variable to model the hourly effects of events occurring during 1 PM - 5 PM 

 Indicator variable to model the hourly effects of events occurring during 2 PM - 6 PM 

 Weighted average of the previous 24 hours of cooling-degree hours with a base of 70°F 

 
Weighted average of the previous 3 hours of cooling-degree hours with a base of 75°F.  Captures 
shorter-term effects of high temperatures. 

 Error term 

The conceptual basis for statistical analysis is that with large sample sizes, the effect of unobservable 

or omitted factors not related to the main effect will disappear due to the power of averaging.  

Presumably, many factors affect an individual customer’s usage other than what can be included in a 

large-scale model.  In a large sample, such as hundreds of customers over three months, it is likely 

that the effect of these omitted factors is small.  However, in smaller samples, such as one or a few 

customers’ regression models, these omitted factors could have an important effect.  This means that 

results for sub-samples of the dataset should be viewed with increasing caution as the sub-samples 

decrease in size. 

A related issue is that any measure of event-impact standard error associated with these individual 

customer regressions inherently assumes that the model has been fully and correctly specified so that 

the only remaining unexplained variation is completely random – meaning that it is unrelated to any 

variables of interest.  As noted, this may be untrue at an individual customer level.  Moreover, 

statistical variation can only be calculated based on the observed events during the study period.  This 

means that it cannot take into account the effect of weather patterns or other recurring behavior 

patterns that are not well-represented in the dataset, but are likely to arise in the future.  When the 

statistical model is asked to provide an extrapolation, there is no procedure for adjusting its 

uncertainty estimate upward because it is an extrapolation.  Both of these issues probably lead to an 

under-estimation of the true level of variance that should be expected in Summer Saver results – even 

assuming no operational changes or changes in underlying customer behavior.  The degree of this 

under-estimation is unknown because there is no data to model it. 

Given that caveat, standard errors for load impacts are calculated as: 

, 

Where stdp is the standard deviation of the prediction, i.e., the standard error associated with the fact 

that all coefficients are estimated values, and rmse is the root-mean-squared-error of the regression, 

or the error associated with the fact that the model has a baseline of uncertainty in it even if 
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coefficients are estimated perfectly.  The stdp value is calculated independently for each hourly 

prediction of each customer’s load. 

Having calculated the standard error for each hour for each customer, aggregate standard errors are 

calculated assuming that errors are independent across customers.  Therefore, variances can be 

summed to get aggregate variance. 

Having calculated standard errors of predicted load impact, percentiles of load impact are calculated 

based on a Gaussian (Normal) distribution with standard deviation equal to the calculated standard 

error and mean equal to the estimated load impact.  This calculation is justified by the central 

limit theorem. 

3.2.2 Residential Regression Model Validation 

In order for a model to be useful in the context of Summer Saver, it must make accurate predictions 

of CAC loads, primarily at high temperatures.  Three methods of validation are used to assess this 

capability:  in-sample testing, out-of-sample testing and evaluation of general plausibility 

of predictions.   

In-sample Testing 
At an individual level and at an aggregate level, the model must explain a large degree of the 

observed variation in household load during the summer of 2011.  This is a test of the in-sample R-

squared of the model, which is the simplest test for the model to pass and is a necessary, but not 

sufficient, condition for the model to be useful.  A substantial body of evidence from previous 

evaluations by FSC and others demonstrates that weather and time variables in a regression model 

can explain a large amount of the variation in CAC load.  Therefore, a model without an aggregate R-

squared value of at least 70% would suggest a significant error and would bear significant 

investigation before being accepted.  

The R-squared of a model can be inflated by including a very large number of variables.  In this case, 

the model will appear to explain a large degree of the variation in load, but it may be highly inaccurate 

in predicting for conditions outside of the range of values for the data used to estimate the model.  

This is known as over-fitting.  Diagnosing whether a model is over-fit inherently requires judgment.  

There are several metrics, such as adjusted R-squared, that attempt to penalize models for including 

many variables, but they are all based on arbitrary weightings of the number of variables as compared 

to the fit of the model.  The method used here to guard against over-fitting is out-of-sample testing, 

as described below.  An over-fit model will not produce accurate out-of-sample predictions. 

Although the regressions were performed at the individual premise level, from an evaluation 

standpoint the focus is less on how the regressions perform for individual premises than on how they 

perform for the aggregated sample.  Therefore, the R-squared (goodness-of-fit) statistic is presented 

for both the individual regressions and for the aggregate load: the average R-squared among 

individual residential households is 43% and at an aggregate level the residential R-squared is 87%.   

Summer Saver events are only likely to be called at times of very high temperature.  Therefore the 

models must accurately fit load at high temperatures in particular.  Figures 3-1 and 3-2 show that the 

residential models do fit load accurately for the high-temperature periods during the summer of 2011.  
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Figure 3-1 shows the average actual hourly load in the residential sample and the predicted hourly 

load for afternoon non-event hours between 1 PM and 6 PM when the temperature exceeds 80°F.  Bias 

in these figures would show itself as a persistent difference between actual and predicted values in 

one direction.  For example, if the actual values strongly tended to be above the predicted values, 

then that would indicate that the model under-predicted load at high temperatures.  There is little 

systematic difference between the predicted and actual loads as shown in the figure.  On average, 

residential predicted loads exceed the actual loads by 2%.  

Figure 3-1: Actual and Predicted Average Residential Load for 1 PM to 6 PM, Non-event 
Days When the Temperature Exceeds 80°F 

 

In addition to checking how well the model predicts load at non-event times, it is also important to 

verify that the model predicts load well during event periods.  Figure 3-2 shows the predicted versus 

actual values during the 2011 events when the temperature exceeds 80°F. This includes all 2011 

event hours except those on September 9.  For residential households, the actual load exceeds the 

predicted load by less than 1%. 
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Figure 3-2: Actual and Predicted Average Residential Load for Event Hours When the 
Temperature Exceeds 80°F  

 

These figures do not necessarily indicate that the model is good at predicting in the ex ante 

application because these values are predictions for conditions used to fit the model.  Instead, these 

figures show that there is only a small amount of variation in the existing data that the model does 

not account for at the higher temperature levels. 

Out-of-sample Testing 
As a second and more stringent test, the model must do well in out-of-sample testing on days 

included in the 2011 dataset.  The procedure for out-of-sample testing consists of re-estimating the 

model while holding back some of the hot non-event days of the summer from the estimation.  

Predicted loads were then compared to the actual loads on the days held back.  This is a true test of 

the regression model’s predictive power for weather conditions actually observed during the summer 

of 2011.   

Figure 3-3 shows the actual average hourly energy use of residential households for the out-of-sample 

days, July 6, July 8, and September 6.  The close match between predicted values and actual values 

reflects the ability of the regressions to predict accurately.  For residential customers, the average 

absolute difference between predicted and actual load is approximately 3% during the hours of 1 PM 

to 6 PM.   
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Figure 3-3: Average Residential Whole-Building Actual and  
Predicted Load for Out-of-sample Days 

 

The final test of the model is one of general plausibility in predicting loads during the event periods 

and for the ex ante weather conditions.  This test is less well-specified but consists of producing 

reasonable household load patterns as a function of weather as compared to results in past years, 

results from other programs and general knowledge about how the program works.  This reality-check 

test is a crucial way to test the assumptions that go into the model.  The ex ante estimates that will be 

presented in a future report were carefully reviewed and generally display the expected patterns 

across event conditions and are consistent with other studies after judgmentally accounting for 

expected differences due to weather conditions and other factors.   

3.2.3 Day-matching for Commercial Customers 

As noted above, complications arose due to the unique nature of the 2011 event days which led to the 

use of a day-matching method to produce commercial ex post impact estimates.  Under this method, 

each event day was matched with a non-event day that appeared to provide an accurate reference 

load based on pre-event, event-period and post-event loads.  The underlying concept is that even 

after accounting for the effects of weather, loads remain highly correlated throughout the day.  

Observing that loads on an event day and non-event day are very close in the hours before an event 

and after an event is strongly suggestive that loads during the event would have been similar had the 

event not occurred. 11 

                                                           
11 This is a theoretical argument for using a time-series analysis.  However, the data requirements for such an analysis are 

stringent, the models are much more time consuming to fit and validate, and effectively communicating the methods and 
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With this conceptual framework in mind, a day’s load had to satisfy three basic criteria to be judged to 

be suitable as a reference load for an event day: 

 The event day average loads during the three hours before the event had to be at least as 
close to the average loads on the reference day during the same hours as they were to the 
average loads during those hours on any other non-event weekday.  In other words, there 
was no day with pre-event average loads closer to those on the event day than the reference 

day chosen; 

 The event day loads during the event hours had to be below the loads on the reference day 
during the same hours; and 

 The event day loads during the three hours immediately after the event had to be near to or 
higher than the loads on the reference day during the same hours.   

September 7 and August 26 had such high loads that no non-event day had loads that satisfied all the 

criteria.  This was also true for using day-matching to model the impacts of the first two hours of the 

event on September 8, which was interrupted by the blackout.  For these cases, the non-event day 

with the highest load was chosen and a same-day adjustment was applied.  A same-day adjustment is 

a way to account for known biases in a reference load.  In this case, the fact that that load in the hour 

immediately before the event is much higher than the highest available reference day load indicates 

the high likelihood of a downward bias in the reference load during the event.  To partially correct this 

bias, the reference load is adjusted by adding to it the difference between event day load and the 

reference day load during the hour immediately before the event.  This adjustment is calculated 

separately for each cycling option of each customer segment and applied to the day-matching 

reference load for each event day.   

Table 3-5 shows the days that were chosen to provide reference load for each ex post event day.  

Appendix B shows graphs of the load shapes and adjusted load shapes for each event day load and 

reference day load. 

Table 3-5: Event Days and Matched Reference Load Days for Commercial Customers 

Event Day Matched Days 

26-Aug-11 2-Aug-11 

7-Sep-11 2-Aug-11 

8-Sep-11 2-Aug-11 

9-Sep-11 7-Jul-11 

12-Oct-11 6-Sep-11 

13-Oct-11 25-Aug-11 

Based on the figures in Appendix B, the day-matching reference loads for commercial customers 

appear quite plausible.   

                                                                                                                                                                                           
results of such a departure from standard load impact evaluation methodologies would be challenging. Additionally, they 

are of limited to no use in ex ante estimation.  For these reasons this simplified approach to addressing autocorrelation is 

preferred. 
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Having identified matched days, load impacts for each cycling option within each customer segment 

were estimated by subtracting average hourly load during each event from average hourly load during 

the same hours of the matched reference day.  Standard errors were calculated at an hourly level as 

the square root of the sum of squared standard errors of each hourly average load.   
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4 Ex Post Load Impact Results 

This section contains the ex post load impact estimates for program year 2011.  Residential estimates 

are provided first, followed by commercial estimates.  The section also contains an analysis on control 

device communication failure and an analysis of the distribution of impacts across customers.   

4.1 Residential Ex Post Load Impact Estimates 

Table 4-1 shows the ex post load impact estimates for residential Summer Saver customers for 2011.  

Summer Saver residential customers delivered an average aggregate load reduction over the six 

events of 14 MW.  Residential impacts ranged from a low of 6 MW on September 9, to a high of 19 

MW on September 7 and September 8.  Due to the modeling issues discussed in Appendix A, these 

results contain a higher than usual level of uncertainty, but they provide no evidence that program 

performance in 2011 deviated significantly from 2010. 

Table 4-1:  
Residential Ex Post Load Impact Estimates 

Date 

Impact Temperature 

Per CAC 
Unit (kW) 

Per Premise 
(kW) 

Aggregate (MW) 
Midnight-

5 PM 
During 
Event 

26-Aug-11 0.34 0.41 10 77 85 

7-Sep-11 0.64 0.77 19 82 90 

8-Sep-11
12

 0.66 0.79 19 81 93 

9-Sep-11 0.20 0.24 6 69 73 

12-Oct-11 0.40 0.49 12 76 93 

13-Oct-11 0.62 0.74 18 78 89 

Average 0.48 0.57 14 78 87 

 

4.2 Commercial Ex Post Load Impact Results 

Table 4-2 shows the ex post load impact estimates for commercial Summer Saver customers for 2011.  

Summer Saver commercial customers delivered an average aggregate load reduction over the six 

events of 3.7 MW.  Commercial impacts ranged from a low of 2.1 MW on September 9, to a high of 

4.9 MW on September 8.  The highest average impact for a full event, unaffected by the blackout, was 

4.4 MW on August 26.  Again, these results contain a higher than usual level of uncertainty, but they 

provide no evidence that program performance in 2011 deviated significantly from 2010. 

                                                           
12 Results only include the first two hours of the event.  The second two hours were affected by the blackout. 
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Table 4-2: Commercial Ex Post Load Impact Estimates 

Date 

Impact 
Average 

Temperature 

Per CAC 
Unit (kW) 

Per Premise 
(kW) 

Aggregate 
(MW) 

Midnight-
5 PM 

Event 

26-Aug-11 0.34 0.89 4.4 76 82 

7-Sep-11 0.31 0.79 3.9 81 89 

8-Sep-11
13

 0.38 0.98 4.8 80 91 

9-Sep-11 0.16 0.42 2.1 68 71 

12-Oct-11 0.29 0.75 3.7 75 92 

13-Oct-11 0.26 0.67 3.3 77 86 

Average 0.29 0.75 3.7 76 85 

 

4.3 Load Impacts by Cycling Option 

Table 4-3 shows load impacts per CAC unit and in aggregate by cycling option for residential and 

commercial customers.  Within each segment, the average impact per unit is very close.  This 

suggests a selection bias on the part of customers, with those who are more likely to have large CAC 

loads being more likely to choose the less intensive option.  This selection bias has been noted in 

previous evaluations, although its effect is particularly stark here.  Direct measurement of CAC load 

was only taken for a small sample of customers for contract settlement, so it is not possible to 

determine whether load impacts as a percentage of CAC load are significantly greater for the higher 

cycling options.  It is worth noting that for residential customers, whole-building reference loads are 

significantly higher for customers on the 50% cycling option.  Residential customers on the 50% 

option cycling had average whole-building reference loads of 2.24 kW over all six events in 2011, 

whereas those on 100% cycling had reference loads of 1.66 kW.  This is despite the fact that those on 

100% cycling have slightly higher CAC tons per premise. 

For commercial customers, those on 50% cycling tend to have much lower whole-building loads, but 

this is less informative than for residential customers.  CAC load is typically a large percentage of 

whole-building loads for residential customers, while for commercial customers this is less 

consistently true. 

                                                           
13 Results only include the first two hours of the event.  The second two hours were affected by the blackout. 
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Table 4-3: Per CAC Unit Load Reductions by Cycling Option (kW)  

Date 

Per CAC (kW) Aggregate (MW) 

Cycling Option Cycling Option 

Residential Commercial Residential Commercial 

100 50 50 30 100 50 50 30 

26-Aug-11 0.37 0.31 0.34 0.35 5.8 4.3 2.8 1.6 

7-Sep-11 0.67 0.62 0.31 0.30 10.5 8.5 2.5 1.4 

8-Sep-11 0.64 0.67 0.41 0.32 10.0 9.2 3.3 1.5 

9-Sep-11 0.2 0.20 0.18 0.13 3.1 2.7 1.5 0.6 

12-Oct-11 0.41 0.40 0.27 0.33 6.5 5.4 2.2 1.5 

13-Oct-11 0.61 0.63 0.27 0.24 9.5 8.7 2.2 1.1 

Average 0.48 0.47 0.30 0.28 7.6 6.3 2.4 1.3 

In light of these findings, and the fact that the residential 100% cycling group is paid four times as 

much to participate as the 50% cycling group, it may be possible to improve program cost 

effectiveness by increasing the share of program participants on the lower cost 50% cycling option 

and/or by reducing the incentive paid for 100% cycling while increasing the incentive paid for 50% 

cycling.  The same may be true for the commercial cycling options. 

4.4 Control Device Communications Failure 

The load-control switches that trigger events to happen at the customer level rely on radio signals for 

event activation.  If the switch is broken, if the signal is blocked or if the signal is sent on a frequency 

that the device is not set up to receive, then the event will not occur for that device.  This is referred 

to as control device communication failure. 

Direct measurement of control device communication was not done for the 2011 evaluation.  

However, a load research sample of CAC load was collected for the sake of contract settlement with 

Comverge.  This sample contained 177 customers on the 100% cycling option.  Customers on 100% 

cycling that do not have event load reductions of very close to 100% can be presumed to be affected 

by communication failure.  Also, there is no obvious reason why customers on 100% cycling should 

have different communication failure rates from residential customers on other cycling options, so this 

analysis probably reflects communication across the residential Summer Saver population.  

Commercial Summer Saver customers may have different rates of communication failure due to 

differing building types and switch locations.  

As shown in Table 4-4, an analysis of the number of customers in the 100% cycling group that had 

load above 0.02 kW during each event hour of 2011 revealed that communication failure was variable, 

but tended to be about 15% during the middle hours of most events.  The higher percentage of non-

zero loads in the first hour can be attributed to the fact that for each customer, events actually begin 

sometime in the first half-hour of the event, rather than immediately at the top of the hour.  It should 

be noted that the samples underlying the values for the two October events are smaller, with data 

from only 65 customers used to calculate the failure rate for October 12 and only 50 customers used 

to calculate the failure rate for October 13.   
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Table 4-4: Percentage of Premises on 100% Cycling with  
Non-zero14 Load during Each Event Hour  

Event 
Date 

Event Hour 

1 2 3 4 

26-Aug 33% 9% 13% 14% 

7-Sep 43% 15% 16% 18% 

8-Sep 33% 13% NA
15

 NA
16

 

9-Sep 16% 10% 9% 9% 

12-Oct 17% 12% 12% 13% 

13-Oct 31% 33% 37% 38% 

Average 29% 15% 16% 16% 

Communications failure did not affect the same customers for each event; only 3% of sampled 

customers showed failure for all of the events for which they were called.  Almost 13% of sampled 

customers showed failure for more than 50% of the event hours for which they were called, and 49% 

showed failure for more than 10% of their event hours. 

The overall distribution of control device communication failure in this sample, including the average 

level of failure is quite similar to what was observed in 2010.   

4.5 The Distribution of Impacts across Customers 

In previous evaluations, the distribution of event impacts across customers was estimated based on 

the distribution of average estimates from individual customer regressions.  Recent internal analysis 

has shown that this method contains too much noise to be useful as an indicator of the real 

distribution of event impacts at the customer level.    

As an alternative, Table 4-5 shows estimated event impacts for customers segmented into deciles of 

average load on hot, non-event days.  In this procedure, each customer was placed into a decile 

category based on their average usage during the hours 12-6 PM on the days used for day-matching 

(listed in Table A-1 in Appendix A).  Impact estimates were calculated separately for each decile using 

day-matching plus a same-day adjustment, with reference loads provided by the days listed in Table 

A-1.  The same-day adjustment procedure was applied in the same manner as the adjustment used to 

produce the primary impact estimates for commercial participants (described above in section 3.2.3).  

This is a different procedure than the one used to estimate ex post impacts, which is why the overall 

average values in the table differ from the overall average ex post event impact.   

                                                           
14 The rule actually used was greater than 0.02 kW of CAC load. 

15 No useful data due to the blackout. 

16 No useful data due to the blackout. 
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As the table shows, non-event day loads are highly predictive of average impacts.  The table indicates 

that the top 30% of customers provide 67% and 60% of residential and commercial aggregate load 

impacts, respectively. 

Table 4-5 also reports the standard errors of the estimates for each decile.  It is important to note that 

while the overall trends in the table are consistent and likely reflect a true underlying pattern, the 

estimates at the decile level have fairly large standard errors.  For example, the impact estimate for 

the highest decile for residential customers is statistically significantly different at the 5% level from 

the impact in the 5th decile, but not from 6th, 7th, 8th or 9th deciles.  For commercial customers, none of 

the impact estimates are statistically significantly different from each other.  When the data is divided 

into quartiles rather than deciles (not shown) some statistically significant differences appear for 

commercial customers. 

Table 4-5: Average Estimated Impacts within Deciles of Usage 

Decile 

Residential Customers Commercial Customers 

Average 
Impact (kW) 

% of Total 
Impact 

Standard 
Error (kW) 

Average 
Impact (kW) 

% of Total 
Impact 

Standard 
Error (kW) 

1 0.03 1 0.09 0.03 1 0.06 

2 0.11 2 0.15 0.08 2 0.12 

3 0.06 1 0.17 0.16 4 0.17 

4 0.26 5 0.19 0.23 5 0.19 

5 0.31 5 0.23 0.37 9 0.21 

6 0.43 8 0.24 0.36 8 0.25 

7 0.69 12 0.28 0.51 12 0.26 

8 1.02 18 0.33 0.53 12 0.31 

9 1.26 22 0.34 0.77 18 0.40 

10 1.55 27 0.50 1.27 29 1.13 
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Appendix A. Discussion of Modeling Choices 

As compared to the two previous years, Summer Saver events in 2011 did not lend themselves well to 

modeling by observing loads at non-event times with similar temperatures.  This was true for two 

reasons.  First, the load research sample for contract settlement was corrupted, leaving only a small 

sample of customers with unperturbed load on any given event day.  Second, four of the six events 

were not ideal from a modeling perspective in that they had certain unusual aspects that made them 

different from all non-event days during 2011.  This is especially true if the goal is to use the 2011 

events alone as input into a predictive model of event impact as a function of event day temperatures.   

For these reasons, it was determined that reference load estimation should not be limited to being 

based on loads observed during similar weather conditions when other sources of reference load may 

be more accurate.  With this guideline in mind, two different methodologies were used to estimate 

load impacts for both customer segments – individual customer regression based on weather, as has 

been used previously, and day-matching based on load shapes and magnitudes.  Each method is 

described above in section 3 in the context of either residential or commercial customers.  In fact, 

both methods were used for both customer segments and the results are compared in this Appendix.  

The main conclusion from using these two methods is that from a practical standpoint, the two 

methods are each adequate for residential customers.  For commercial customers, only the day-

matching method produced reliable estimates. 

The initial reason for looking to alternatives to individual customer regressions came from the fairly 

poor performance of the method for commercial customers on the October 12 and 13 event days17.  

This is shown in Figures A-1 and A-2, which compare predicted reference load on those days to 

actual load.   

As shown in Figure A-1, the model under-predicts loads in the time leading up to the event on October 

12.  This is due to the lack of other comparable days in the summer that are so hot following a very 

cool period.  The model then predicts an implausible spike in reference load during the 4-5 PM hour 

because the load and temperature information from the rest of the summer indicate that a day with 

such a high temperature must have a large event impact.  This spike is not observed during any non-

event day; commercial loads tend to peak during the 3-4 PM hour.  This suggests that the spike is an 

artifact of the model trying to fit a large event impact.  Moreover, examination of the load data itself 

indicates that it is much more likely that load impacts for that day are simply lower than would be 

expected on a day with that temperature.  This makes sense given that it was an unusually hot day in 

mid-October and the days leading up to it were significantly cooler. 

                                                           
17 It also performed badly on September 9, but this could have been more easily fixed had the decision been made to use 

the regression model as the primary source of impact estimates.  This is discussed below. 
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Figure A-1: Average Commercial Actual Load and  
Predicted Reference Load for October 12 

 

Figure A-2 shows that the model forces the reference load to be implausibly high on October 13 during 

the 4-5 PM hour.  Again, it does this because the other information that the model is based on 

indicates that the event impact should be higher on such a hot day.  That the model, and all other 

plausible regression models based on weather, produced such clear inaccuracies for 2 out of 6 event 

days prompted the use of day-matching to estimate commercial ex post load impacts.  As shown in 

the figures in Appendix B, day-matching produces more plausible reference loads for these October 

event days. 
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Figure A-2: Average Commercial Actual Load and  
Predicted Reference Load for October 13 

 

A.1. Day Matching 
Under certain conditions, individual customer regressions do not necessarily provide the most accurate 

reference load estimates.  This occurs when there is reason to believe that the loads on an event day 

are not accurately predicted by a simple function of the temperature on that day.  Two factors arose in 

2011 that call into question estimates based on individual customer regressions.  First, two of the 

event days occurred on days of unseasonable warmth in mid-fall, leading to smaller loads than when 

similar temperatures occurred earlier in the season.  Second, the only heat wave of the summer took 

place from September 6-8.  The last two days were both event days and each had higher loads during 

the pre-event hours than any other day of the summer, including the only other heat wave of the 

summer.  This means that the only source of reference load is an extrapolation from loads observed 

during cooler conditions.  In this situation, linear regression has no particular advantage over simpler 

methods, such as the day-matching method used here. 

There were a total of six event days in 2011; two of them occurred in mid-October.  Figure A-3 shows 

that for residential customers the loads on those days were much lower than on the only non-event 

day with comparable temperature and were similar to loads observed on days with lower 

temperatures. Figure A-4 shows a side by side comparison for each day’s average whole building load 

and average temperature. 

 For residential customers, average temperatures peaked at 95°F on October 12 and 13.  

Temperatures peaked at 94°F on September 6 and at 87°F on August 25, both non-event days.  As 

Figure A-3 shows, between the two, August 25 provides a much more plausible reference load for the 
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October event days even though the temperature on September 6, as indicated by Figure A-4 is closer 

to that on the October event days.  There are several other non-event days with higher loads than 

August 25.  The important point is that those days also have much higher loads than the October 

event days, despite being substantially cooler.  In other words, merely warm days in mid-summer 

tend to have higher loads than hot days in October.  This means that a temperature-based model may 

produce inaccurate estimates for the October event days. 

Figure A-3: Residential Whole-building Load on  
October Event Days, August 25 and September 6 

 

Figure A-3 illustrates a point made in the 2010 evaluation as well.  Loads vary for many unobservable 

reasons, which can lead temperature-based estimates to be inaccurate in certain circumstances.  In 

the 2010 evaluation, however, there was a treatment-control design that automatically provided good 

reference load estimates during all event hours.  Although such a design was in place for 2011, the 

design was corrupted and cannot be used for this analysis, as mentioned above.   
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Figure A-4: Residential Whole-building Load and Average Temperature on October Event 
Days, August 25 and September 6 

 

For commercial customers the situation is more complex; but the basic conclusion is similar, as is 

shown in Figure A-5.  The two October event days have loads in the pre-event hours that are similar 

to the only other day of comparable heat, September 6.  However, they also have similar loads during 

those hours to August 25, a much cooler day.  The September 6 load during the afternoon and 

evening is significantly higher than that on August 25, which makes sense given the higher 

temperatures.  The September 6 load remains significantly higher than the October event day loads in 

the post-event hours.  This suggests that the October event day loads, in the absence of an event, 

would have behaved more similarly to the load on August 25, which is slightly lower than the October 

event day loads during the post-event hours.  A regression based on weather, however, does not yield 

this result, as shown above in Figures A-1 and A-2. 
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Figure A-5: Commercial Whole-building Load on  
October Event Days, August 25 and September 6 

 

Given these complications, the day-matching procedure that is described in section 3.2.3 was applied 

to both commercial and residential customers.  Table A-1 shows the days that were chosen to provide 

reference load for each ex post event day.  Appendix B shows graphs of the load shapes and adjusted 

load shapes for each event day load and reference day load. 

Table A-1: Event Days and Matched Reference Load Days 

Event Day 
Matched Days 

Residential Commercial 

26-Aug-11 29-Aug-11 2-Aug-11 

7-Sep-11 6-Sep-11 2-Aug-11 

8-Sep-11 9-Sep-11 2-Aug-11 

9-Sep-11 31-Aug-11 7-Jul-11 

12-Oct-11 24-Aug-11 6-Sep-11 

13-Oct-11 25-Aug-11 25-Aug-11 
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Based on the figures in Appendix B, the day-matching reference loads for commercial customers 

appear quite plausible.  The day-matching reference loads for residential customers appear less 

accurate, but still fairly plausible in most cases.   

Having identified matched days, load impacts for each cycling option within each customer segment 

were estimated by subtracting average hourly load during each event from average hourly load during 

the same hours of the matched reference day.  Standard errors were calculated at an hourly level as 

the square root of the sum of squared standard errors of each hourly average load.   

A.2.  Results Comparison 
Table A-2 shows a comparison of residential ex post estimates developed using day matching and 

individual customer regressions.  The table shows values for each residential cycling option separately 

and for all customers.  The average estimates from day-matching are lower, due primarily to the 

October event days where the regression function produces a larger impact based on the high 

temperatures on those days.   

Table A-2: Ex Post Load Impact Estimates for Residential Customers  
Developed Using Two Methods (kW/CAC unit) 

Date 

50 100 All 

Day 
Matching 

Regression 
Day 

Matching 
Regression 

Day 
Matching 

Regression 

26-Aug-11 0.42 0.44 0.31 0.38 0.36 0.41 

7-Sep-11 0.94 0.80 1.00 0.74 0.97 0.77 

8-Sep-11
18

 0.64 0.77 0.48 0.81 0.55 0.79 

9-Sep-11 0.18 0.24 0.08 0.24 0.13 0.24 

12-Oct-11 0.16 0.50 0.25 0.48 0.21 0.49 

13-Oct-11 0.45 0.73 0.36 0.76 0.40 0.74 

Average 0.47 0.58 0.41 0.57 0.44 0.57 

While there are some appreciable differences in the estimates developed using each method for 

residential customers, these differences are of secondary importance to the issue of whether either set 

of estimates leads to different conclusions about expected future program performance.  To this end, 

both sets of estimates are consistent with the ex ante estimates developed in 2010, and either set of 

ex post estimates leads to nearly identical ex ante estimates for 2012 and beyond.  This will be 

documented in the ex ante report to follow.  In the end the regression model was chosen on 

pragmatic grounds.  Both the ex post and ex ante regression models were already fully built and their 

output documented by the time the day-matching results were being produced.  It took substantially 

less work to verify that using the day-matching model would not materially change ex ante results 

than it would take to fully produce and document those results. 

                                                           
18 Result is only calculated over the first two hours of the event. 
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Table A-3 shows a comparison of ex post estimates for commercial customers developed using day 

matching and individual customer regressions.  The table shows values for each commercial cycling 

option separately and for all commercial customers together.  The estimates vary across methods 

substantially.  In one case the estimated event impact is negative for customers on 30% cycling.  This 

case is less important than it appears because it takes place under unusually cool event conditions.  In 

this case, the model fits a general trend to event impact as a function of temperature and the best fit 

happens to be negative at such a low temperature.  This would not occur if there were many 

observable events at temperatures in the mid-70s.  Moreover, if the regression results were being 

used as the final commercial ex ante estimates, then that day could have been modeled separately, 

leading to a more reasonable, but still quite low impact estimate. 

More important is the general implausibility of the regression results, as displayed in Figures A-1 and 

A-2.  The figures in Appendix B show that, at the least, the day-matching procedure produces 

plausible reference loads in almost all cases.  This is not true for the regression model.  Additionally, 

unlike in the residential case, the regression model produces ex ante results different enough from 

previous results to be questionable given the amount of useful information they are based on.  For 

these reasons, it was decided to use the day-matching results to produce the commercial ex post 

results.  Additionally, it was decided to use the day-matching ex post results in conjunction with 2010 

ex post results to develop an ex ante model for commercial customers.  This will be documented in the 

ex ante report to follow. 

Table A-3: Ex Post Load Impact Estimates for Commercial Customers  
Developed Using Two Methods (kW/CAC unit) 

Date 

30 50 All 

Day 
Matching 

Regression 
Day 

Matching 
Regression 

Day 
Matching 

Regression 

26-Aug-11 0.35 0.28 0.34 0.28 0.34 0.28 

7-Sep-11 0.30 0.63 0.31 0.57 0.31 0.59 

8-Sep-11
19

 0.32 0.58 0.41 0.75 0.38 0.67 

9-Sep-11 0.13 -0.24 0.18 0.16 0.16 0.01 

12-Oct-11 0.33 0.45 0.27 0.26 0.29 0.34 

13-Oct-11 0.24 0.61 0.27 0.45 0.26 0.52 

Average 0.28 0.39 0.30 0.41 0.29 0.40 

 

  

                                                           
19

 Result is only calculated over the first two hours of the event. 
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Appendix B. Day-matching Load Shapes 

This appendix provides information on the plausibility of the reference loads obtained through day-

matching.  Table A-1, above, shows the list of days used as matches for each event day for each 

customer segment.  The two sections that follow show the whole-building load of each event day for 

each cycling option within each customer segment as compared to the whole-building load on the 

matched reference day.  The adjusted reference day load is also shown. 
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B.1. Residential Day-Matching Figures (Event Window Shaded) 

 

Figure B-1: Residential Load on August 26 and Matched Unadjusted Reference Load 

 

Figure B-2: Residential Load on August 26 and Matched Adjusted Reference Load 

 

.5
1

1
.5

2
2
.5

kW

0 5 10 15 20 25
Hour Ending

 100% Cycling Unadjusted Reference Load  100% Cycling Event Day Load

 50% Cycling Unadjusted Reference Load  50% Cycling Event Day Load

.5
1

1
.5

2
2
.5

kW

0 5 10 15 20 25
Hour Ending

 100% Cycling Adjusted Reference Load  100% Cycling Event Day Load

 50% Cycling Adjusted Reference Load  50% Cycling Event Day Load



 

35 
 

Figure B-3: Residential Load on September 7 and Matched Unadjusted Reference Load 

 

Figure B-4: Residential Load on September 7 and Matched Adjusted Reference Load 
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Figure B-5: Residential Load on September 8 and Matched Unadjusted Reference Load 

 

Figure B-6: Residential Load on September 8 and Matched Adjusted Reference Load 
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Figure B-7: Residential Load on September 9 and Matched Unadjusted Reference Load 

 

Figure B-8: Residential Load on September 9 and Matched Adjusted Reference Load 
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Figure B-9: Residential Load on October 12 and Matched Unadjusted Reference Load 

 

Figure B-10: Residential Load on October 12 and Matched Adjusted Reference Load 
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Figure B-11: Residential Load on October 13 and Matched Unadjusted Reference Load 

 

Figure B-12: Residential Load on October 13 and Matched Adjusted Reference Load 

 

B.2. Commercial Day-Matching Figures (Event Window Shaded) 
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Figure B-13: Commercial Load on August 26 and Matched Unadjusted Reference Load 

 

Figure B-14: Commercial Load on August 26 and Matched Adjusted Reference Load 
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Figure B-15: Commercial Load on September 7 and Matched Unadjusted Reference Load 

 

Figure B-16: Commercial Load on September 7 and Matched Adjusted Reference Load 
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Figure B-17: Commercial Load on September 8 and Matched Unadjusted Reference Load 

 

Figure B-18: Commercial Load on September 8 and Matched Adjusted Reference Load 
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Figure B-19: Commercial Load on September 9 and Matched Unadjusted Reference Load 

 

Figure B-20: Commercial Load on September 9 and Matched Adjusted Reference Load 
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Figure B-21: Commercial Load on October 12 and Matched Unadjusted Reference Load 

 

Figure B-22: Commercial Load on October 12 and Matched Adjusted Reference Load 
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Figure B-23: Commercial Load on October 13 and Matched Unadjusted Reference Load 

 

Figure B-24: Commercial Load on October 13 and Matched Adjusted Reference Load 
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Appendix C. Revised 2010 Ex Post Values 

Two data processing errors were discovered that affect the aggregate residential and commercial ex 

post values from 2010.  Table C-1 shows the originally reported and revised values for each customer 

segment and for all customers.  The largest change is for the system peak day, September 27, 2010, 

where the revised value is 4 MW above the originally reported value.  The other changes range from 0 

to 2 MW, all in the positive direction.  All values in each column are reported to two significant digits, 

as was done for the 2010 evaluation.  This leads some of the values in the “All” columns to appear too 

large or too small due to rounding, although they are not. 

Table C-1: Originally Reported and Revised  
2010 Ex Post Aggregate Impact Estimates (MW) 

Date 

Residential Commercial All 

Originally 
Reported 

Revised 
Originally 
Reported 

Revised 
Originally 
Reported 

Revised 

15-Jul-10 11 12 4.7 4.4 16 16 

16-Jul-10 15 16 5.2 4.9 21 21 

17-Aug-10 12 13 4.7 4.4 16 17 

18-Aug-10 15 17 5.2 4.9 20 22 

19-Aug-10 13 14 4.9 4.6 17 19 

23-Aug-10 13 15 4.7 4.4 18 19 

24-Aug-10 13 15 4.9 4.7 18 20 

25-Aug-10 11 13 4.8 4.5 16 18 

27-Sep-10 26 29 6.8 6.5 32 36 

28-Sep-10 13 15 5.3 5.0 18 20 

29-Sep-10 10 12 4.9 4.7 15 17 

Average 14 16 5.0 4.8 19 21 

 


