Smart Grid Architecture Demonstrations

Smart Grid Architecture Demonstration

Gabriel Leggett Electrical Engineer P.E.

Project Technical Lead

SDG&E EPIC Communication Infrastructure Projects

- Visualization and Situational Awareness Demonstrations (EPIC-1 Project)
 - Focus: Presentation of data to system operators in a way that enhances situational awareness
- Smart Grid Architecture Demonstrations (EPIC-1 Project)
 - Focus: Communications standards for integration of feeder equipment and DER into networked automation
- Modernization of Distribution System and Integration of Distributed Generation and Storage (EPIC-2 Project)
 - Focus: New communication standards for substation network
- Monitoring, Communication, and Control Infrastructure for Power System Modernization (EPIC-2 Project)
 - Focus: Open Field Message Bus (presented at last EPIC symposium)

Project Objectives

- Perform pre-commercial demonstration of key candidate prototype building blocks (Intelligent Electronic Devices (IED), Systems, and Communication Standards).
- Improve the understanding of alternatives for future electrical system configurations and communication protocols, object models, and related standards.
- Document results to support communication standards decisions in development of a networked communication architecture.
 - For use by SDG&E internal stakeholders
 - For use by others

Project Approach

- Review existing SDG&E architecture, identifying next generation architecture principles, and evaluating standards and protocols for the various architectural constructs.
- Undertake a pre-commercial demonstration in a lab environment utilizing next generation architecture standards and protocols.
- Assess alternatives and develop recommendations for future adoption.

Project Focus

- Determine preferred options for migrating legacy communication infrastructure to newly emerging industry standards.
- Build on existing architectural concepts, including the IEC 61850 and other relevant utility reference architectures.
- Simulate data flow between various devices and systems in the existing architecture in various use cases.
- Identify and capture high level functionalities and interoperability requirements of various systems.

Project Phases

- SDG&E Internal Project Work Prior to Contractor Procurement
- Team effort of SDG&E and Contractor:
 - Architecture Baseline and Development
 - Conduct Pre-Commercial Demonstration (Lab environment and field deployment)

Project Phases

Phase 1 – Architecture Baseline and Development

Task #1 - Contractor Kickoff, Stakeholder Consultations, and Work Plan

Task 2 – As-Is Architecture Baseline Analysis

Task 3 – Review Next Generation Architecture Principles

Task 4 – Evaluate Standards and Protocols

Task 5 – Develop New Architecture for SDG&E

Phase 2 – Pre-Commercial Demonstration

Task #1 - Contractor Kickoff, Stakeholder Consultations, and Work Plan

Task 2 - Design Test System

Task 3 – Test System Setup and Integration

Task 4 – Conduct Pre-Commercial Demonstration

Task 5 – Data Assimilation, Analysis, Formulation of Findings, Conclusions, and Recommendations

Task 6 – Comprehensive Final Report

Data Flow and Functionalities (Phase 1)

- SCADA and network operation
- Substation protection, monitoring, and control
- Advanced distribution automation
- Advanced distribution management
- Distributed energy resources (DER)
- Demand response and load control
- Meter reading and control
- Customers systems integration
- Operational planning and optimization
- Records and asset management

Distribution Equipment Focus (Phase 2)

- Interoperability with IEDs and Advanced Energy Storage
- Demonstrate a Distribution Process Bus using modern architecture and standard distribution equipment:
 - SCADA Distribution Feeder Switch. Ex: Trayer
 - Distribution Feeder Circuit Breaker
 - Reclosers (Ex: Cooper Form 6 and Intellirupters)
 - Fault interrupters (Ex: Elastimold Vacuum Interrupter)
 - Voltage Regulators
 - SCADA Capacitor
 - Dynamic Voltage Controller
 - Advanced Energy Storage (Ex: Battery Storage Inverter)

Project Team

Internal SDG&E Groups

- System Protection and Controls Engineering
- Development and Advance Technology Integration
- Information Technology
- Information Security
- Electric Distribution Operations
- Distributed Energy Resources

Contractor

Project Schedule

- SDG&E Internal Project Work
 - In progress and continuing to project completion
 - Includes selection of a contractor
- Architecture Baseline and Development
 - December 2016 to August 2017
- Conduct Pre-Commercial Demonstration (Lab environment and field deployment)
 - January 2017 to August 2017
- Contractor's Final Report
 - September 2017

Project Status

- Project plan developed
- Internal project team formed
- Internal literature review conducted
- Status of communication standards under review
- Request for proposal released; anticipated contractor selection date:
 - December 2016

Remaining Steps

- Review contractor proposals
- Select contractor
- Hold kickoff meeting with internal team and contractor
- Perform baseline analysis
- Perform pre-commercial demonstration
- Prepare final report

Thank you

Q&A

Gabriel Leggett
Distributed Energy Resources
Electrical Engineer P.E.
GLeggett@semprautilities.com

Frank Goodman
EPIC Program Manager
FGoodman@semprautilities.com