

# Underground Remote Fault Indicator

**EPIC Fall Symposium** 

Bryan Pham – Sr. Engineering Manager October 18, 2017



#### Overview

- Project Description
- Project Benefits
- Project Status
- Procurement Summary
- Lessons Learned



## Project Description – UG RFI

- Demonstrate field installations of Underground Remote Fault Indicators to meet the following SCE operating requirements:
  - Submersible;
  - Integrated radio;
  - No Shunt for CT, Fiber Optics output;
  - Power harvesting (15 amps min);
  - Bi-Directional current flow;
  - Lightweight/Small form factor;
  - Real Time current monitoring;
  - 12 CT sensors or 4 position switch; and
  - No planned outage.



## **Project Benefits**

- Key component for Grid Modernization
- Improve Reliability Reduce SAIDI index (System Average Interruption Duration Index)
  - Reduce Troubleman Response Time
  - Integrated with utility tools Distribution Management System & Outage Management System
  - Support Fault Detection Isolation Restoration (FDIR) program
- Support DER (Distributed Energy Resource) Integration by providing real time circuit telemetry to improve Grid Situation Awareness
  - Provide engineering data to perform circuit analysis
  - Provide system operators fault location
  - Provide system operations with power flow & direction



## Project Status Q3 2016 – Q4 2018

- Request for Proposals released to 11 Vendors
- Three vendors selected for demonstration:
   Power Delivery Product, Sentient Energy, & 3M
  - Power Delivery Product UG RFI
    - Complete field installations by December 2017
    - Complete field trial evaluation by Q3 2018
    - Complete standards by Q4 2018
  - 3M & Sentient Energy
    - Complete SCE lab evaluation by Q1 2018
    - Complete field demo evaluation by Q4 2018



#### Power Delivery Products UG RFI

#### Features:

- Integrated radio
- No Shunt for CT, Fiber Optics output
- Power harvesting (15 amps min)
- Bi-Directional current flow
- Lightweight/Small form factor
- Submersible\* currently being tested
- Real Time current monitoring
- 12 CT sensors or 4 positions switch
- No Planned outage







#### **Procurement Summary**

 Sentient Energy, one of the selected suppliers, is a California based company

Successfully demonstrated Sentient Energy Overhead Remote Fault Indicator in EPIC1. It is currently SCE standard for OH RFI.

- Power Harvesting
- No battery
- Integrated Landis+Gry Radio & GPS
- Bi-Directional power flow\*
- No Planned outage
- Real Time current monitoring
- 10-15 Year Life Zero maintenance
- LED indication
- Plug & Play



#### Summary - Lesson Learned

- Competition resulted in creativity & best efforts from vendors.
- Accurate technical specifications are crucial for prospective product vendors.
- Teamwork & collaboration are the keys to success. Vendors rely on SCE engineers to test product functionality and to integrate with SCE systems; e.g. Distribution Management System and Outage Management System.
- Accuracy degrades at higher currents.
- Integrated GPS expedited the deployment process.
- Over-The-Air firmware upgrade capability is required for future upgrade.

O







# EPIC Investment Framework for Utilities

|                                                                                                                            | Safety                                                                                | Affordability                                                                                                                  | Reliability | Key Drivers & Policies                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Cross Cutting/Foundational Strategies & Technologies Smart Grid Architecture, CyberSecurity, Telecommunications, Standards | <ul><li>Demonstrate Strategies 8</li><li>Adaptive Protection Strat</li></ul>          | istributed Energy Resource<br>& Technologies to Increase Renewable Re<br>egies<br>torage Strategies & Technologies             |             | <ul> <li>33% RPS</li> <li>CSI</li> <li>Gov's 12,000 MW<br/>DG Plan</li> <li>OTC retirements</li> <li>AB32</li> <li>Storage Mandate</li> </ul> |
|                                                                                                                            | <ul> <li>Demonstrate Strategies a</li> <li>Prepare for Emerging Technology</li> </ul> | n and Optimization Ind Technologies to Optimize Existing Ass Indologies Grid Operations of the Future                          | sets        | <ul> <li>SB17</li> <li>Aging<br/>Infrastructure</li> <li>Workforce<br/>Development</li> <li>CA Economic<br/>Resiliency</li> </ul>             |
|                                                                                                                            | <ul> <li>Leverage the SmartMeter</li> <li>Provide Greater Billing Floring</li> </ul>  | Products and Services Ena<br>Platform to Drive Customer Service Excensibility & Visibility<br>Ianagement for Grid Optimization |             | <ul> <li>ZNE</li> <li>CSI</li> <li>Net Energy Metering</li> <li>Peak Reduction</li> <li>Electric Transportation</li> </ul>                    |





# High Impedance Fault Detection

## **EPIC Fall Symposium**

Bryan Pham – Sr. Engineering Manager October 18, 2017



#### Overview

- Project Description
- Project Benefits
- Project Status
- Procurement Summary
- Lessons Learned



- Overhead distribution circuit conductors can break and fall to the ground due to car collisions, high winds, splice failures, etc.
- High impedance faults can occur when a conductor touches a high resistance surface (e.g., asphalt, concrete, sand, rocks, etc.). High impedance faults do not generate enough current to trip traditional protection devices (i.e., substation circuit breakers, automatic reclosers, and fuses).
- As a result, many distribution power lines are still energized when an SCE employee (e.g., a troubleman) arrives at the scene of a downed-wire.
- An energized wire laying on the ground poses serious public safety risk and can be fatal for any person touching the energized wire.



## Objective

Demonstrate an innovative approach to improve public safety by detecting downed wires on high impedance surfaces; e.g. asphalt, concrete, sand, etc.

Develop an anomaly detection system using Spread-Spectrum Time-Domain Reflectometry (SSTDR) techniques that can identify anomaly (high) impedances on electrical distribution lines and determine where they are occurring.



## System Concept Overview

# Spread Spectrum Time Domain Reflectometry (SSTDR) Concept:

- A radar signal, operating at frequencies between 2MHz –
   40MHz is injected into the line at a known starting point.
- The signal will reflect back to the origin wherever it hits an impedance mismatch.
- Reflections are mapped to known objects to create a "good" map. The system can now look for reflections that don't map to known objects.
- The system looks for impedance mismatches that aren't a part of the normal line construction.



#### Concept continued

- Assume this represents a known "good" map of the circuit
- A series of signals is injected into the line and the reflections are captured
- All reflection points are mapped to the "good" map





## Concept continued

- The signal is injected into the line regularly.
- Reflections are mapped to the "good" map.
- All known points that match the "good" map are eliminated from the reflection map.
- The anomaly is localized based on known good reflections received and reflections that were not received or that came back with different signatures.
- Note that an anomaly impedance will have an affect on the reflection signature downstream of it, which aids in finding distance to the anomaly and localization by branch.



Location = Equipment ID 1 + distance towards Equipment ID 2



## **Project Benefits**

#### Potentially:

- Improve Public Safety
- Improve situational awareness for system operators

#### **Equipment Demonstration & Evaluation Facility**



- Located in Shawnee sub
  - 66/12kV
- Test circuit: BRAVES
- Dedicated circuit breaker for test circuit
  - In addition various circuit protection
- Two circuit sections
- Overhead and underground line
- Equipment:
  - Automatic Reclosers (ARs)
  - RAG Switches
  - Load Banks
  - Capacitor Banks
  - Grid simulators
  - 2MW Battery





#### **EDEF's First Test on 4/25/2016: High Impedance Fault Detection**





## **Project Status**

- Phase 1: (2014)
  - Demonstrate the feasibility of technology to solve the project objective.
- Phase 2A & 2B: (2015-Q2 2017)
  - Develop solution, including software algorithms, detection hardware, and integrated systems. Conduct prototype field testing and demonstration at Chino Test Circuit. Conduct energized circuit testing at Shawnee Substation's Equipment Demonstration & Evaluation Facility (EDEF).
- Phase 2C: (Q4 2017-Q2 2018)
  - Improve distance & localization accuracy and branching limits.
  - Evaluate effects of various distribution equipment on line.
  - Demonstrate system's ability to self-learn new circuit to an event and accurately detect new anomalies.
  - Develop mapping strategy to Distribution Management System/Outage Management System.
  - Refine Prototype to be ready for pilot on actual distribution circuit.
- Phase 3: (Q3 2018- Q2 2020)
  - Pilot on several distribution circuits.
  - Provide solution for system wide deployment.

## Summary - Lesson Learned

- Spread Spectrum Time Domain Reflectometry technology has the potential to solve high impedance fault (wire down) detection.
- The SCE 12 kV Equipment Demonstration and Evaluation Facility was instrumental in conducting energized wire down tests without affecting customers.
- Actual field trial will be needed to refine this solution for deployment.







# EPIC Investment Framework for Utilities

|                                                                                                                            | Safety                                                                            | Affordability                                                                                                                  | Reliability | Key Drivers & Policies                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Cross Cutting/Foundational Strategies & Technologies Smart Grid Architecture, CyberSecurity, Telecommunications, Standards | <ul><li>Demonstrate Strategies &amp;</li><li>Adaptive Protection Strate</li></ul> | istributed Energy Resource & Technologies to Increase Renewable Re egies torage Strategies & Technologies                      |             | <ul> <li>33% RPS</li> <li>CSI</li> <li>Gov's 12,000 MW<br/>DG Plan</li> <li>OTC retirements</li> <li>AB32</li> <li>Storage Mandate</li> </ul> |
|                                                                                                                            | <ul><li>Demonstrate Strategies a</li><li>Prepare for Emerging Tec</li></ul>       | <b>n and Optimization</b><br>nd Technologies to Optimize Existing Ass<br>hnologies<br>Grid Operations of the Future            | sets        | <ul> <li>SB17</li> <li>Aging<br/>Infrastructure</li> <li>Workforce<br/>Development</li> <li>CA Economic<br/>Resiliency</li> </ul>             |
|                                                                                                                            | <ul><li>Leverage the SmartMeter</li><li>Provide Greater Billing Flo</li></ul>     | Products and Services Ena<br>Platform to Drive Customer Service Exceptibility & Visibility<br>Ianagement for Grid Optimization |             | <ul> <li>ZNE</li> <li>CSI</li> <li>Net Energy<br/>Metering</li> <li>Peak Reduction</li> <li>Electric<br/>Transportation</li> </ul>            |