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Executive Summary 

San Diego Gas & Electric (SDG&E) and National Renewable Energy Laboratory (NREL) collaborated on a 

project funded through the California Public Utility Commission’s (CPUC) Electric Program Investment 

Charge (EPIC) and U.S. Department of Energy (DOE). The purpose of EPIC-3, Project 3 is to demonstrate 

capabilities for leveraging SDG&E’s AMI system with its 1.4 million electric meter endpoints to provide 

actionable secondary voltage data and analysis to SDG&E staff and other prospective users. The project 

focus included two modules. Module 1 focused on using Advanced Metering Infrastructure (AMI) data for 

a voltage sensor network, while Module 2 focused on using AMI data to identify endpoint phasing and 

meter-to-transformer mapping. This report addresses Module 1 only. The comprehensive final report for 

Module 2 is provided in a separate document. 

SDG&E is looking to leverage its existing (AMI) to provide a foundational, pervasive secondary voltage 

monitoring network and a phase identification system. Through this pre-commercial demonstration 

project, NREL assisted SDG&E in demonstrating the tools and strategies for using the AMI-based field 

measurements for distribution system monitoring and planning. Specifically, NREL configured the tools to 

estimate primary network voltages, identify planning network model discrepancies, and automate phase 

mapping and meter-to-transformer mapping using the AMI measurement data.  

The AMI data-based grid operation is an alternative to conventional model-based approaches where non-

validated equivalent circuit models are used for determining the operational strategies, such as 

controlling voltage regulation devices and smart inverters to achieve voltage regulation. Further, as the 

penetration of photovoltaic (PV) systems increases, SDG&E also desired to study the associated impacts 

on the distribution system and the effectiveness of the integration measures. The PV smart inverter study 

in this project examined the impacts of PV on the distribution circuit voltage profile and traditional 

mechanical voltage regulation equipment operations. The efficacy of various PV smart inverter settings 

was quantified using the SDG&E feeder models. 

Key Findings 

The following are the key findings of the pre-commercial demonstrations using NREL developed tools: 
 

• The utility feeder models used in this project have inaccuracies due to incorrect phasing, line 

parameter issues, and approximations used in the load and PV profiles. 

• The machine learning models of the service transformer secondaries can provide reasonable 

estimation of the primary voltages. However, training data is essential for building these machine 

learning models. The primary voltage estimates from the physics-based method can be used as the 

training data for building the machine learning models of the secondaries. 

• Circuit characteristics, measurement data available, PV penetration levels, and quality of geographic 

information system (GIS) data impact the selection of phase identification algorithms. The phase 

identification algorithms that work well in one feeder may not show similar performance in a 

different feeder depending on the feeder characteristics.  
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The algorithms based on supervised learning showed higher accuracy levels compared to those based on 

unsupervised learning for phase identification. However, supervised learning requires training data. 

Accuracy levels of nearly 90% and 94% are obtained on the selected two feeders in this study using a 

supervised learning algorithm with 30% training data, where a feeder is defined as a three-phase set of 

conductors (power lines) emanating from a substation circuit breaker serving customers in a defined local 

distribution area. 

• Existing high PV penetration levels in the selected SDG&E feeder create voltage issues both on the 

primary and secondary networks. Enabling PV smart inverter settings significantly reduced the 

voltage exceedances in the simulations. There are minor variations in the voltage improvement 

among different smart inverter settings, but generally the voltage profile is better when smart 

inverters are enabled compared to when they are disabled. 

• The volt/var curve slope is a key parameter influencing the voltage improvement. 

 

Recommendations 

The use cases presented in this project demonstrate the accuracy, feasibility, and rationality of using AMI 

data for greatly improving the planning and operations activities in the near-term, especially for feeders 

with high levels of PV adoption. It is recommended that specific tools (Utility Planning Network Model 

Anomaly Detection Tool, AMI Meter-to-Transformer Mapping, and Phase Identification Using AMI Data) 

be applied by the SDG&E team for other feeders. The evaluation of data-driven controls using realistic 

emulation capabilities of the ADMS Test bed provides a feasible demonstration for real-time data-driven 

control of high-PV feeders for consideration and implementation in the medium-term. Such an approach 

could reduce the reliance on planning models and make the operations resilient to the ubiquitous 

problem of poor model quality. 

SDG&E will need to identify a stakeholder group within the company to lead this commercial adoption 

process.  
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1.0 Introduction 

The purpose of EPIC-3, Project 3 is to demonstrate capabilities for leveraging SDG&E’s AMI system with 

its 1.4 million electric meter endpoints to provide actionable secondary voltage data and analysis to 

SDG&E staff and other prospective users. The project focus included two modules. Module 1 focused on 

using Advanced Metering Infrastructure (AMI) data for a voltage sensor network, while Module 2 

focused on using AMI data to identify endpoint phasing and meter-to-transformer mapping. This report 

addresses Module 1 only.  

As the penetration of photovoltaic systems increases, the voltage on the service transformer secondary 

increases, and when coupled with power production from renewable generation sources, there is 

potential for voltage to exceed American National Standards Institute (ANSI) C84.1 Range A limits. 

SDG&E is looking to leverage its existing AMI infrastructure to provide a foundational, pervasive 

secondary voltage monitoring network and a phase identification system to address these and other 

issues associated with monitoring and managing their distribution system. Through this project, NREL 

assisted SDG&E in evaluating the challenges and mitigation strategies associated with high penetration 

PV-in the distribution circuits. The proposed approach is an alternative to a conventional model-based 

approach where equivalent circuit models are used for determining operational strategies. NREL 

leveraged its Energy Systems Integration Facility (ESIF) high performance computing (HPC) simulation 

and advanced distribution monitoring system (ADMS) test bed capabilities for pre-commercialization 

and evaluation of the approach and solutions envisioned by SDG&E. 

2.0 Project Objectives 

The primary objective of the proposed scope was pre-commercial demonstration and evaluation of 

NREL-developed algorithms and tools for leveraging secondary network voltage measurement data 

made available through the AMI. The algorithms, tailored for use in this project, use the AMI data 

provided by SDG&E, collected from selected customer smart meters on selected feeders for data-centric 

grid planning and operations. A feeder (also known as a circuit) is defined as a three-phase set of 

conductors (power lines) emanating from a substation circuit breaker serving customers in a defined 

local distribution area. In addition, some of the challenges of using a non-modeled control i.e., without 

relying on the network model for computing the control decisions, were identified. The lessons learned 

will be disseminated to the broader utility community and other stakeholders through this 

comprehensive final report filed with the CPUC and released on SDG&E’s EPIC public website and 

through submission to peer-reviewed publications and workshops, either co-authored by SDG&E and 

NREL or with the approval of SDG&E. The project demonstrated the value of AMI data for performing 

the following: 

• Identification of anomalies in planning models 

• Identification of customer phasing information at the meter-level 

• Demonstration of effectiveness of different smart inverter settings on customer voltages 
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3.0 Issues and Policies Addressed 

This project module endeavored to understand the impact of high PV penetration in the SDG&E service 

territory and determine the effectiveness of technology solutions such as energy storage, smart 

inverters, flexible loads, and other solutions to mitigate issues. The proposed approach is an alternative 

to a conventional model-based approach where non-validated equivalent circuit models are used for 

determining operational strategies. The demonstration leveraged NREL’s ESIF HPC simulation and PHIL 

capabilities to evaluate the approach and solutions envisioned by SDG&E. 

The project team collaborated through a Cooperative Research and Development Agreement (CRADA) 

on pre-commercial demonstration of tools, models, and algorithms for leveraging the SDG&E AMI 

infrastructure and data for advanced grid monitoring and planning. Through this collaboration, the 

project team developed a framework for generating synthetic AMI data for different PV penetration 

scenarios; developed, demonstrated, and integrated a new technique for identifying discrepancies in 

primary network models; and developed methods for analyzing and visualizing AMI datasets for an 

SDG&E feeder. This framework is shown in Figure 1 below. The framework allows for the generation of 

multiple scenarios of interest by applying different load/PV characteristics to the validated planning 

model, and the application of data processing techniques that mimic the data processing in AMI meters 

to generate synthetic AMI data. The machine learning-based data analytics algorithms can be applied on 

this synthetic AMI data to study the performance of the algorithms in these planning scenarios that do 

not exist in the field today but may be anticipated in the future. The work performed in this 

demonstration project was an extension of this CRADA with specific focus on analyzing the impact of 

different PV penetration scenarios through AMI data, phase identification, and meter to transformer 

mapping.  

 

 

 

Figure 1. Framework for generating synthetic AMI data 
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4.0 Project Focus 

The focus of this project module was to demonstrate advanced AMI data-based techniques for 

improving utility planning and operations. Some of the focus areas included identification of anomalies 

in the network planning model, demonstrating the impact of different PV inverter settings on customer 

voltage profiles as observed through AMI data, and demonstrating an advanced AMI data-based voltage 

control using a realistic emulation capability at NREL called the ADMS Test Bed. 

5.0 Project Scope Summary 

The scope of the work included using data from SDG&E’s existing AMI infrastructure. AMI data from 

selected SDG&E feeders was used to identify the individual phases of the customer meter on the feeder 

and map the customer meters to the corresponding service transformers. These selected feeders are 

Feeders A and B. Feeder A has 325 connected transformers and 5,173 connected meters. It serves a 

relatively dense suburban neighborhood with a mix of overhead and underground wiring and a relatively 

even mix of line-line (L-L) and (L-N) phasing on the transformers. Feeder B has 649 connected 

transformers and 2,393 connected meters. It serves a spread-out suburban neighborhood with 

predominantly underground wiring and predominantly line to neutral (L-N) phasing on the transformers. 

The results from the analysis were validated through field verification conducted by SDG&E field 

personnel. The team evaluated the algorithms on the ADMS test bed located in the ESIF at NREL using 

realistic feeder parameters and distributed energy resources (DER). Further, NREL worked with SDG&E 

personnel to deploy the algorithms on SDG&E’s analytics platform for further consideration for 

operationalization.  

The primary objective of the project module was pre-commercial demonstration and evaluation of 

NREL-developed algorithms and tools for leveraging secondary network voltage measurement data 

made available through the AMI. The algorithms used the AMI data provided by SDG&E, collected from 

selected customer smart meters on selected feeders for data-centric grid planning and operations. In 

addition, some of the challenges of using a non-modeled control i.e., without relying on the network 

model for computing the control decisions, were identified. The lessons learned will be disseminated to 

the broader utility community through this comprehensive final report that will be filed with the CPUC 

and released on SDG&E’s EPIC public website and through peer-reviewed publications and workshops 

with the consent of SDG&E. The project team embarked on the following use cases: 

• PV Smart Inverter Study 

• Utility Planning Network Model Anomaly Detection Tool 

• Phase Identification Tool 

• Meter to Transformer Mapping 

• Data-Centric Grid Operations 
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PV Smart Inverter Study 

High PV penetration levels in distribution feeders can cause operational challenges including voltage 

issues, reverse power flow, and protection issues. Standards recommend using PV smart inverters to 

support the distribution grid services, specifically voltage regulation. However, there are many smart 

inverter settings recommended by the standards and their performance on the SDG&E feeders has not 

been reported in literature. In this study, the impact of various smart inverter settings including 

California Rule 21 (CA 21) [6], Hawaii Rule 14 [7], IEEE 1547 [8] with no deadband, CA 21 with reactive 

power compensation at only high or low voltage range (referred to as “hockey stick” in this report), and 

volt-var-watt control on the selected SDG&E feeders was examined. 

Utility Planning Network Model Anomaly Detection Tool 

An automated tool was demonstrated that uses the AMI measurement data to identify the inaccuracies 

in the network model used for distribution planning. Numerous distribution network analysis, 

monitoring, and control applications; including volt/var optimization, state estimation, and distribution 

automation, require accurate distribution network models. The GIS maintained by utilities can be 

inaccurate because of a significant amount of missing data, restoration activities, and network 

reconfiguration. This can lead to network model inaccuracies. The utility planning network model 

anomaly detection tool used the AMI data to identify network model issues. It accomplished this by 

building the approximated secondary network models from the AMI data and using them to estimate 

the primary voltages. The estimated primary voltages were then compared with the primary voltages 

obtained from the simulations of the utility planning network model to identify model anomalies. 

Phase Identification Tool 

The phase identification tool performs automated phase mapping of the AMI meters based on AMI data. 

The GIS database maintained by the utility is known to have phase connectivity errors due to restoration 

activities, network reconfiguration, human error, and missing data. Traditionally, the phase connectivity 

database is periodically updated by field verification which is expensive and time-consuming. With the 

availability of AMI data, the phase connectivity can be identified through data analytics. The existing 

phase identification techniques work well in distribution feeders that have low or no PV generation; 

however, they fail to identify the phases accurately when considerable PV generation is present. The 

phase identification tool demonstrated in this project uses supervised learning to determine the phase 

connectivity accurately even when significant PV generation is present. 

Meter-to-Transformer Mapping 

Utilities generally have a meter-to-transformer connectivity mapping database. However, the records in 

this database do not always reflect the latest field conditions due to routine meter field changes and 

occasional human data entry errors. Accurate meter-to-transformer mapping information is needed for 

load balancing, service order work, and transformer load management. A solution that can check and 

correct the service transformer and meter mapping records is required to address this need. The goal of 

this use case was to demonstrate a proof-of-concept AMI meter-to-service transformer mapping 

solution that identified incorrect records based on AMI measurement data. 
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Data-centric Grid Operations 

The integration of ADMS and AMI measurements offers a unique opportunity to further modernize grid 

control. In this use case, an AMI-based, data-driven, volt/var control algorithm, and its synergies with 

ADMS for distribution grid operations, were evaluated using SDG&E feeder and AMI data. The inputs of 

this algorithm were AMI power and voltage measurements. The algorithm controls the substation 

transformer load tap changer (LTC) tap position, capacitor bank switch positions, and PV inverter 

setpoints to ensure voltage regulation. This new paradigm for grid operations was demonstrated using 

NREL’s ADMS Test Bed capability wherein the feeders and the controls were implemented and evaluated 

in a realistic utility environment. 

6.0 Initial Benefits Analysis and Value Proposition 

The initial benefit estimate and value proposition focused on improved distribution network reliability, 

reduced cost, increased safety, and enhanced environmental sustainability.     

Improved Reliability 

The utility planning network model anomaly detection tool provides distribution network operators 

greater visibility into their systems and helps them understand the voltage dynamics on the primary 

network. This can help in taking corrective actions in terms of updating device control settings or 

installing additional regulation devices to ensure voltages are maintained within the desirable limits and 

reliable network operation. As DER penetration levels increase, the traditional assumption that voltage 

drops network-wide is no longer valid. Virtual sensors on the primary network that provide voltage 

estimates are desirable to monitor voltage dynamics on the primary network. Further, identification of 

the inaccuracies in the utility planning network model is a key step in the correction process. The 

corrected models result in improved planning and operation decisions, leading to greater network 

reliability.  

The phase identification tool further enhances reliability by maintaining the phase connectivity 

information in the model based ADMS and the Distributed Energy Resource Management System 

(DERMS). Phase identification will further support complex phase balancing. The PV smart inverter study 

quantified the impact of different smart inverter settings recommended in the standards on the network 

voltage profiles. These insights guide utilities to recommend and configure appropriate smart inverter 

settings for the PV systems within their service areas to ensure desired voltage levels across their 

networks. 

Reduced Costs 

The estimation of the primary voltages, based on the AMI data by the utility planning network model 

anomaly detection tool, removes the need for installing physical voltage sensors for planning purposes. 

Thus, it is more economical. Similarly, the phase identification tool determines the customer phase 

connectivity analytically based on the AMI data. Traditionally, the utilities undertake expensive field 

verification activities from time to time to keep their phase connectivity up to date. Alternatively, special 

equipment is used to detect customer phasing. When the AMI data is available, relying on the phase 
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identification tool for the automatic phase mapping results in lower costs as it does not require 

additional equipment or field checks.  

As the PV penetration levels increase, high voltage volatility is anticipated on the distribution networks. 

Traditionally, network upgrades or installation of advanced grid-edge devices are required for improving 

the network voltage profiles. As the grid standards now mandate PV smart inverters to participate in 

voltage regulation, configuring the appropriate smart inverter settings effectively supports the voltage 

regulation without having to resort to expensive traditional network upgrades. Further, the fast voltage 

regulation capability of the PV smart inverters reduces the wear and tear on the traditional mechanical 

voltage regulation devices. Thus, appropriate PV smart inverter settings can lead to lower investment 

and maintenance costs. 

Increased Safety and/or Enhanced Environmental Sustainability 

The phase identification tool promotes increased safety by reducing the need for personnel to travel and 

work in the field for the phase connectivity verification activities. This also results in reduced greenhouse 

gas (GHG) emissions from the vehicles used for this travel. The PV smart inverter study demonstrated 

that the PV smart inverters can help improve the voltage profile of the distribution networks and 

support grid integration of higher amounts of renewable energy sources. This promotes the 

environmental sustainability by accelerating the use of clean energy resources.  

7.0 Use Cases 

7.1 PV Smart Inverter Study 

In recent years, the penetration of residential and commercial rooftop PV systems has been increasing 

rapidly [1]. The PV systems, however, can cause issues with the distribution system when penetration is 

high [2] [3]. The power outputs from PV systems peak at noon on a sunny day but the load consumption 

for residential customers at that time is typically low. These inconsistent profiles of PV output and load 

can cause overvoltage and reverse power flow problems [4].  

To solve issues resulting from renewable energy generation, standards are now requiring utilization of 

PV smart inverters. Smart inverters can absorb or supply reactive power, or automatically curtail power 

output to maintain voltage levels [5]. Additionally, smart inverters have the ability to compensate for the 

voltage fluctuations in the grid via reactive power control even when the generation is not operating. 

There are many recommended smart inverter settings, and their performance on SDG&E feeders has 

not yet been fully studied. This demonstration simulated and studied the feeder operation with all 

distributed PV systems equipped with smart inverters. Different rules were tested including California 

Rule 21 (CA 21), Hawaii Rule 14, IEEE 1547 with no deadband, hockey stick, and volt-var-watt control. 

The performance of each rule was evaluated by using a set of metrics. 

7.1.1 Configuration and Methodology 

Load disaggregation was performed to extract the load and PV profiles from the AMI net load 

measurements. A custom function was created in Python to emulate different volt-var-watt 
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functionalities and settings suggested in standards as such a function is not available as needed in 

OpenDSS. The OpenDSS is an electric power Distribution System Simulator (DSS) for supporting 

distributed resource integration and grid modernization efforts. 

Load Disaggregation 

The distribution feeder model used in this study, for the purpose of discussion, is Feeder A. The AMI data 

of this feeder was provided for the period between October 1, 2018, to January 15, 2019 (107 days). 

AMI load measurements from SDG&E included the net load consumption of each customer, therefore, a 

disaggregation was required to extract the PV profile and load profile for each load location. From the 

load definition in the feeder model and peak power generation of each PV system, the determination 

was made that the PV penetration for this feeder is around 70% relative to peak load. The irradiance 

profile of the feeder area during the selected period of 107 days was downloaded from the National 

Solar Radiation Database (NSRDB) [9]. By using the ratings of each PV system, the irradiance profile, and 

the net load profile of each load node, the PV profile and load profile at each load location were 

disaggregated. After the disaggregation, the scenario of 100% PV penetration was modeled with the 

load and PV profiles. This was the case used in the following simulations.  

Volt-VAR-Watt Smart Inverter Function 

In OpenDSS, the volt-var-watt smart inverter control function is not yet fully operational, therefore a 

Python function to implement the volt-var-watt control was created. The inputs of the function include 

inverter rated kVA, solar irradiance at current time step, and measured per-unit (PU) voltage at the 

previous time step. First, the volt-var and volt-watt curves were predefined. Then based on the voltage 

and volt-watt curve, the function determined the required real power output and the maximum 

available reactive power. After that, the maximum available reactive power, and volt-var curve, and the 

reactive power output was calculated based on the measured voltage. The outputs of this function were 

the real and reactive power outputs of the PV system. These outputs were used to update the PV system 

output in OpenDSS. 

PV Smart Inverter Curves 

The smart inverter curves for all cases are summarized in this section. Several smart inverter curves, 

both from the standards and the custom curves of interest were studied in this work. These curves are 

depicted in Figure 2. 

• California Rule 21 (CA 21): The maximum and minimum percentage of available reactive power 

is +/-30%. This percentage is zero when the voltage is within 0.967-1.033 PU and reaches 

maximum/minimum when the voltage is below/over 0.92/1.07 PU 

• Hawaii Rule 14 (HI 14): The maximum and minimum percentage of available reactive power is 

+/-44%. This percentage is zero when the voltage is within 0.97-1.03 PU and reaches 

maximum/minimum when the voltage is below/over 0.94/1.06 PU 

• IEEE 1547: The maximum and minimum percentage of available reactive power is +/-44%. This 

percentage is zero when the voltage is within 0.98-1.02 PU and reaches maximum/minimum 

when the voltage is below/over 0.92/1.08 PU 



Application of Advanced Metering Infrastructure Data to Advanced Utility System Operations 

  

 

 8  

 

• California Rule 21 without deadband: The maximum and minimum percentage of available 

reactive power is +/-30%. This percentage reaches maximum/minimum when the voltage is 

below/over 0.92/1.07 PU 

• Hockey stick curve without compensation in low voltage region: The minimum percentage of 

available reactive power is -30%. This percentage is zero when the voltage is below 1.033 PU and 

reaches maximum when the voltage is above 1.07 PU 

• Hockey stick curve with deeper Q absorption: The minimum percentage of available reactive 

power is -75%. This percentage is zero when the voltage is below 1.033 PU and reaches 

maximum when the voltage is above 1.07 PU 

• Volt-VAR-Watt: The volt-var curve is the same as California Rule 21. For its volt-watt curve, the 

maximum available real power starts to decrease from 100% when the voltage is above 1.06 PU 

and reaches zero when the voltage is above 1.1 PU 

 

 

Figure 2. Volt-var and volt-watt curves for PV smart inverter 
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Metrics 

The performance of each smart inverter function was evaluated by using multiple metrics: number of 

capacitor changes, number of LTC operations, average voltage, voltage fluctuation index, voltage 

unbalance index, and number of voltage exceedances nodes. Voltage fluctuations are described as 

repetitive or random variations of the voltage envelope due to sudden changes in the real and reactive 

power drawn by the load.  

Let the 𝑇 stand for the total time steps in the simulation and 𝑁 stand for the total number of nodes in 

the feeder, the average voltage is calculated by:  

𝑉𝑚𝑒𝑎𝑛 =
1

𝑁
× (

1

𝑇
∑ ∑ 𝑉𝑖(𝑡)

𝑇

𝑡=1

𝑁

𝑖=1
) 

The voltage fluctuation index (VFI) measures how the nodal voltage is changing between time steps, i.e., 

voltage fluctuations across the circuit. It is calculated by: 

 

𝑉𝐹𝐼 =
1

𝑁
× (

1

𝑇
∑ ∑ |𝑉𝑖(𝑡 + 1) − 𝑉𝑖(𝑡)|

𝑇

𝑡=1

𝑁

𝑖=1
) 

The voltage unbalance index (VUI) measures the unbalance level of nodal phase voltages across the 

circuit. It is calculated by: 

 

𝑉𝑈𝐼 =
1

𝑁
× (

1

𝑇
∑ ∑ 𝑉𝑖𝑚𝑏

𝑖 (𝑡)
𝑇

𝑡=1

𝑁

𝑖=1
) 

where 𝑉𝑖𝑚𝑏
𝑖 (𝑡) is calculated by using the maximum deviation from average voltage over the average 

voltage. 

The voltage exceedance is defined as voltage out of range 0.94-1.06. The exceedance node is defined as 

a node with more than 12 hours exceedance in the three-month period. 

7.1.2 Results and Discussion 

The PV and load profiles were interpolated to five-minute resolution and the simulation was run using 

the data from October 2018 to January 2019 (107 days, 30,816 data points in total). There were 1,560 

PV systems in the model in total, all with ratings between 5-10 kVA. For the baseline, the power outputs 

of PV systems were determined by the irradiance and inverter rating. For the case with smart inverter 

function enabled, the power outputs of these PV systems follow the corresponding curves. The voltage 

plots in this section are presented for one selected day i.e., October 1, 2018. The metrics were 

computed for the three-month period and summarized in Table 1 and 2. 

California Rule 21 

The voltage profiles for the selected day are shown in Error! Reference source not found.3. Note that 

the bus voltages are reduced during the day due to the LTC at the feeder head lowering the tap position 

to regulate the voltage rise due to PV. 
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Figure 3. Daily voltage profile with/without CA 21 smart inverter 

Hawaii Rule 14 

The voltage profiles for the selected day are shown in Error! Reference source not found.4. 

 

 

Figure 4. Daily voltage profile with/without HI 21 smart inverter 
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IEEE 1547 

The voltage profiles for the selected day are shown in  

5. 

 

 

Figure 5. Daily voltage profile with/without IEEE 1547 smart inverter 

California Rule 21 without Deadband 

The voltage profile for the selected days is shown in Error! Reference source not found.6. 

 

Figure 6. Daily voltage profile with/without CA 21 without deadband smart inverter 
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Hockey Stick Without any Compensation in the Low Voltage Region  

The voltage profiles for the selected day are shown in Error! Reference source not found.7. 

 

 

Figure 7. Daily voltage profile with/without hockey stick without compensation smart inverter 

 

Hockey Stick with Deeper Reactive Power Absorption 

The voltage profiles for the selected day are shown in Error! Reference source not found.8. 

 

Figure 8. Daily voltage profile with/without hockey stick with deeper Q absorption smart inverter 
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Volt-Var-Watt Mode 

The voltage profiles for one example day are shown in Error! Reference source not found.9. 

 

Figure 9. Daily voltage profile with/without volt-var-watt smart inverter 

Summary for Three-Month Simulation 

The summary of the three-month simulation for each smart inverter function is provided in Table 1 and 

Table 2. 

Table 1. Summary of Feeder Operations 

 Capacitor 

bank status 

changes 

LTC tap 

changes 

Average 

Voltage (V) 

V fluctuation 

index score 

V unbalance 

index score 

Baseline 562 1291 249.93 9.67 9.90 

CA 21 646 1335 249.20 9.68 9.86 

HI 14 538 1471 248.60 9.67 9.82 

IEEE 1547 580 1478 248.66 9.66 9.81 

No Deadband 606 1394 248.41 9.67 9.77 

HS-no 

compensation 
646 1335 249.20 9.68 9.86 

HS-deeper Q 624 1506 248.60 9.62 9.83 

Volt-Var-Watt 158 784 250.27 9.61 9.81 
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Table 2. Summary of Voltage Exceedances 

 Secondary Primary 

Voltage 

exceedances hours 

per node 

Number of voltage 

exceedances 

nodes 

Voltage 

exceedance-hours 

per node 

Number of voltage 

exceedance nodes 

Baseline 23.52 752 42.83 481 

CA 21 0.55 16 0.61 0 

HI 14 0.21 9 0.76 12 

IEEE 1547 0.47 28 0.96 14 

No Deadband 1.05 37 2.84 42 

HS-no 

compensation 
0.55 16 0.61 0 

HS-deeper Q 0.09 3 0.91 12 

Volt-Var-Watt 4.45 110 2.95 53 

 

The results show the implementation of smart inverter settings improves the feeder voltage profile by 

reducing the voltage exceedances. Based on the results from the demonstration, the Rule 21 curve 

showed superior results in terms of the number of voltage regulation device actions and eliminating the 

primary voltage exceedances. The Rule 14 curve showed superior results in terms of eliminating the 

secondary voltage exceedances. The voltage exceedances for the volt-var-watt function are higher than 

the others, but it has the lowest number of voltage regulation device actions. The numbers of voltage 

regulation device changes are similar for all other smart inverter functions, and the average voltages are 

all near 249 V. Based on different purposes of controlling the feeder, the corresponding smart inverter 

functions can be selected by using the results from this demonstration. For example, if the utility wants 

to minimize the action times of the voltage regulation devices, Rule 21 can be set for the smart inverters 

on this feeder. 

7.2 Utility Planning Network Model Anomaly Detection Tool 

Numerous distribution network analysis, monitoring, and control applications, including volt/VAR 

control, state estimation, and distribution automation, require accurate distribution network models. 

The GIS maintained by utilities can be inaccurate because of a significant amount of missing data, 

restoration activities, and network reconfiguration. The voltage transfer software tool uses AMI data 

recorded on the distribution secondary network, static primary network connectivity data derived from 

the utility planning model, and voltage data from the time-series simulations of the utility planning 

model to identify the model anomalies. It accomplishes this by building the approximated secondary 

network models from AMI measurements and using them to estimate the primary voltages. The 

estimated voltages are then compared with primary voltages obtained from utility planning network 
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model simulations to identify the mismatches. A list of primary buses having high mismatches is saved 

along with other mismatch statistics. 

The software tool uses AMI data recorded on the secondary distribution network, static primary network 

connectivity data derived from utility planning model, and voltage data from time-series simulations of 

the planning model to identify the model anomalies as shown in Error! Reference source not found..  

 

Figure 10. Illustration of utility planning network model anomaly detection tool 

7.2.1 Configuration and Methodology  

The software tool uses the combination of a physics-based method and a machine learning method to 

estimate the primary bus voltages from the AMI voltage measurements on the distribution secondary 

network. 

Physics-based Method 

In the physics-based primary voltage estimation method, the voltage magnitudes on the primary side of 

the distribution service transformers were estimated using only two smart meters per secondary 

network. The smart meters were strategically placed on the closest and farthest load (in the electrical 

sense) from the transformer, in the electrical sense. This method relies exclusively on smart meter data, 

and therefore it is fully data driven.  

The physics-based primary voltage estimation method has two stages: 

First Stage – Linear Regression: The first stage performed a linear regression on the latest data window 

available at the control center. A data window of 288 points was used, which is equivalent to a day for 

five-minute sampling resolution. The first stage was executed only once. 

The equivalent circuit shown in Error! Reference source not found. was used for each service 

transformer. In this circuit, 𝑟𝑝 and 𝑟𝑠 denote the losses in the primary and the secondary winding of the 

service transformer, respectively. The variables, 𝑣𝑝
′  and 𝑣𝑠

′ denote the voltage magnitudes at the primary 

and the secondary of an ideal transformer, respectively and 𝑛𝑡 is the transformer’s turns ratio. The 

variables, 𝑣1 and 𝑝1 denote the voltage magnitude and the active power measured at the closest load 

from the service transformer while 𝑣2 and 𝑝2 denote the voltage magnitude and the active power 

measured at the farthest load from the transformer.  The variables  𝑟1 and 𝑟2 account for cable 

impedance; and 𝑣𝑢 and 𝑝𝑢 are unknown. A constrained linear least-squares minimization problem was 
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solved to estimate the resistance 𝑟2 and the equivalent resistance between the first meter and the 

primary bus. 

 

Figure 11. Equivalent circuit used for each secondary in physics-based voltage estimation method 

Second Stage – Kalman Filtering: The second stage used a Kalman filter to update the primary voltage 

magnitude estimates continuously, based on new data points. The processing steps in both stages are 

discussed in [20]. 

Machine Learning Method 

Machine learning approaches typically require a training data set that contains the features to be 

estimated. In this application, the inputs included AMI measured power and voltages of two customers 

under each service transformer and the total power consumption of all customers under the service 

transformer. The output is the transformer primary-side voltage. Therefore, the transformer primary 

voltage data must be included in the training data set in addition to the other specified feature data.  

However, because no primary-side measurements were available for this feeder, except the RTU 

voltage, time-series voltage data recorded from the simulations in OpenDSS were used to form the 

required training data set in the algorithm development stage. The quasi-static time-series (QSTS) 

simulation of Feeder A was performed in OpenDSS for the period between October 1, 2018, to January 

15, 2019 (107 days) to obtain primary-side voltages. In the QSTS simulation, time resolution was set to 

hourly to follow AMI load time resolution. The load profile of each secondary-side measured load was 

set to be the AMI measured total power under that transformer. The simulated primary-side synthetic 

voltages from the QSTS simulation and the actual measured secondary-side voltages at the two AMI 

measured loads were used to train the machine learning model. The machine learning method for this 

application is discussed in [21]. 

After validating the performance of the machine learning-based algorithm using simulation data, it was 

applied to actual AMI measurement data recorded in the field. In this stage, the machine learning 

models were trained using the primary voltages estimated by the physics-based method instead of the 

simulation data.  

Combined Method 

Both the physics-based and the machine learning-based methods have limitations in estimating the 

primary-side voltages when applied individually. The physics-based method can use the available AMI 

data to conduct the estimation, but the accuracy is lower than desired. The machine learning-based 
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method can have a higher estimation accuracy, but requires measurements of service transformer 

primary voltages, which was not included in the dataset provided. A combined method was developed to 

leverage the advantages of both these methods. In the combined method, primary voltages were 

estimated by the physics-based method for a given time duration, a primary voltage correction was 

applied, and corrected primary voltages were used to train a machine learning model. The trained 

machine learning models can be used to estimate primary voltages for any time duration. 

Voltage drop across a service transformer typically varies from two to 13 V. The average voltage drop 

between the two AMI meters in all the secondaries of SDG&E Feeder A is 0.58 V. This implies that the 

voltage drop on a service transformer would be four to 20 times of the voltage drop between the AMI 

meters in the corresponding secondary. Accordingly, a correction factor was applied to the primary-side 

voltages estimated by the physics-based method before using them as training data for the machine 

learning models. 

7.2.2 Results and Discussion 

Physics-based Method 

Five service transformer locations as shown in Figure 12 were selected to perform the validation of the 

physics-based method. The corresponding secondaries were modeled in detail with the realistic 

topology and load data. Each secondary model comprises a few loads including the two loads for which 

the AMI load consumption data was available. The load profiles of the two loads were set to be the same 

as AMI load consumption data for those two loads. The aggregated power consumption data at the 

service transformer level (minus the sum of the two loads) were distributed evenly across the rest of the 

loads of that secondary. The primary voltages of the selected secondaries were estimated using the 

physics-based method. The estimation mismatch results are summarized in Table 3. It can be observed 

that the estimation mismatches are all around 4%, which is larger than expected. The physics-based 

method usually will overestimate the primary voltages. Therefore, a machine-learning based method 

and a combined method are developed to improve the estimation accuracy. 
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Figure 12. Five selected locations for the validation of physics-based method. 

 
Table 3. Physics-based method validation results 

 Estimation Mismatch 

Secondary 1 3.74% 

Secondary 2 4.06% 

Secondary 3 3.53% 

Secondary 4 4.28% 

Secondary 5 3.84% 

 

Machine Learning Method 

Multiple machine learning algorithms: Random Forest, Adaptive Boosting, and Gradient Boosting [10] 

[12] were tested to find the relationship between the primary-side voltages and the AMI measurements 

under each service transformer. The data from each service transformer (341 in total) were trained 

separately to account for their unique characteristics, i.e., separate models were constructed for each 

service transformer. The input of each model was the hourly load measurement from two AMI meters 

under that service transformer, the average hourly AMI voltage measurement, and the total load of that 

service transformer. The output of the model was the voltage on the primary side of the service 

transformer. 
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The data from the first month were selected to compare the estimation accuracy of different algorithms. 

K-fold cross validation was used to validate the machine learning models, and the validation was 

repeated 30 times. In each test, 80% of the monthly data was randomly drawn from the data set to train 

the model, and the remaining 20% was used for testing. The mean absolute percentage error (MAPE) 

and maximum absolute percentage error between the synthetic primary voltage and estimated primary 

voltage was used to evaluate the performance of each machine learning method. The performance 

comparison is shown in Table 4. 

Table 4. Performance of Different Methods 

 
Machine Learning Method 

Random Forest Adaptive Boost Gradient Boost 

MAPE 0.12% 0.75% 0.48% 

Maximum 0.46% 1.08% 0.95% 

 

The results summarized in Table 4 show that the Random Forest model performs better than the other 

two models in the selected performance criteria; therefore, it was selected to estimate the primary-side 

voltages in this study. Another advantage of using the Random Forest algorithm (as Random Forest is an 

ensemble learning method that integrates multiple decision trees) is that it will combine these decision 

trees and use average, or voting, schemes to calculate the results. Therefore, any outliers in the AMI 

measurements can be handled with this algorithm. Further, an exhaustive search was conducted to 

determine the model parameters (number of decision trees and maximum depth). These two 

parameters are varied from one to 500 and one to 30, respectively, to test the estimation performance. 

Considering both estimation accuracy and training time, the number of decision trees were selected to 

be 80 and the maximum depth to be 10. The time to build the machine learning model for each service 

transformer was around five seconds, and the total time for building the models for all service 

transformers was 30 minutes. As the process of training the model is usually developed for the 

distribution system planning studies, it meets the run-time requirement. 

The performance of the machine learning-based approach was validated by the synthetic primary-side 

voltages generated from the QSTS simulation of the feeder model in OpenDSS. A secondary model was 

built for each service transformer in OpenDSS. Each secondary model included the two loads with 

voltage measurements and a load without voltage measurement. The load profiles of each secondary 

measured load were set to be one AMI measured power for one meter under that transformer. The load 

profile of the unmeasured load was set to be the AMI measured total power at that service transformer 

minus the two measured loads. The primary-side and secondary-side voltages at the two AMI measured 

loads recorded from the QSTS simulation were used to train the machine learning model. The data from 

the first 1,000 hours were used as a training data set to train the model for each service transformer, 

and the next 1,568-hour data were used to test the performance of each machine learning model.  
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The MAPEs for the estimation of all service transformer primary-side voltages are shown in Figure 13. All 

of them are less than 0.07%. Although the largest estimation error is around 0.65%, the number of such 

occurrences is very small. For most estimations, the error is less than 0.02%. Overall, the MAPE for all 

predictions in the feeder is 0.012%, and the MAPE for the service transformer with maximum error is 

0.056%. Comparing with the 4% error from the physics-based method, the estimation accuracy 

improved a lot, however, this method requires some primary voltage data to train the machine learning 

model for each node. The comparison between estimated and actual voltages (synthetic voltage, in this 

case) for one example service transformer is shown in the two subplots of Figure 14. The first subplot 

shows the voltage comparison, and the second subplot shows the estimation absolute percentage error 

at each time step. Generally, the shape of the estimated voltages follows the actual voltages. The 

mismatch between the estimated and actual voltages is within 0.2%, which is very small. The model was 

also tested when using the first 2,000-hour data as the training dataset and tested with the remaining 

568-hour data. The performance is similar to the previous case, which means the over-fitting problem 

does not exist for the model. 

 

Figure 13. MAPE for the voltage estimation of each service transformer 
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Figure 14. Comparison between estimated and synthetic voltages for one example service transformer 

Combined Method 

The performance of the combined method was validated by the synthetic primary-side voltages 

generated from the QSTS simulation of the OpenDSS model, since the primary-side voltages were not 

recorded in the field. The QSTS simulation was performed and the primary-side and secondary-side 

voltages at the two AMI measured loads for the five selected secondaries were recorded. These 

measurements from the secondary were used as AMI data to validate the combined methods. The 

estimation results are summarized in Table 5. From the results it can be observed that the estimation 

error decreased from 4% to 1% in the 2,000-hour testing period. Most of the time the errors are within 

1%. If some other information is available, for example, some secondary topologies or the reactive 

power measurement, we can integrate them in the existing method to improve the estimation accuracy. 

This combined method was developed as a tool to estimate the primary voltages by using secondary AIM 

measurements. 
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Table 5. Combined method validation results 

 
Estimation Mismatch 

Physics-based Combined 

Secondary 1 3.74% 0.90% 

Secondary 2 4.06% 0.59% 

Secondary 3 3.53% 0.43% 

Secondary 4 4.28% 0.79% 

Secondary 5 3.84% 1.40% 

 

 

Figure 15. Estimation mismatch from one example secondary model 

Identifying Planning Model Anomalies 

The combined method was used to identify the anomalies in the distribution network planning model of 

Feeder A first. For this, the primary voltages estimated by the combined method for a selected duration 

were compared with those obtained from the time-series simulation of the distribution network 

planning model for the same duration. The peak load and minimum load days in December 2018 and 

January 2019 (four days) were selected for this process. The average estimation mismatches for all 

primary buses are shown in Figure 16 and the histogram of all estimation mismatches is shown in Figure 

17. The geographic plot is shown in Figure 18.  
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Figure 16. Estimation mismatch for all primary buses on Feeder A 

  

Figure 17. Histogram of all estimation mismatches in Feeder A 

 

Figure 18. Geographic plot with the mismatch distribution on Feeder A 
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The combined method was also used to identify the anomalies in the distribution network planning 

model of Feeder B first. For this, the primary voltages estimated by the combined method for a selected 

duration were compared with those obtained from the time-series simulation of the distribution 

network planning model for the same duration. The peak load and minimum load days in August and 

September 2019 (four days) were selected for this process. The average estimation mismatches for all 

primary buses are shown in Figure 19 and the histogram of all estimation mismatches is shown in Figure 

20. The geographic plot is shown in Figure 21.   

 

Figure 19. Estimation mismatch for all nodes on Feeder B 

 

Figure 20. Histogram for all estimation mismatches for Feeder B 
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Figure 21. Geographic plot with the mismatch distribution on Feeder B 

7.2.3 Challenges 

One of the key challenges was the lack of measurement data. While the existing methods in the 

literature assume that every load in the secondary circuit is monitored by a smart meter, this study 

assumes that only two loads in the secondary circuit are monitored by smart meters. Lack of 

measurement data on the primary caused difficulties in the validation process. If the relevant network 

data, such as line and service transformer impedance parameters were available, that information could 

have been incorporated into the methods to achieve better accuracy levels. 

7.3 AMI Meter-to-Transformer Mapping 

With emerging technologies and distributed energy resources, the nature of power distribution systems 

has changed dramatically. Utility power engineers need more measurement data at the distribution level 

to monitor and keep the system stable. The AMI enables collection of a tremendous amount of data at 

the distribution level and can be used to design, test, and implement sophisticated distribution planning 

and control strategies. Real-time data recorded by AMI meters, along with the information recorded and 

provided by the GIS, improve the observability of distribution power systems.  

7.3.1 Configuration and Methodology 

The methodology for meter-to-transformer mapping solely uses the voltage data recorded by the AMI. 

There is no requirement for the length of the data. Additionally, the methodology accommodates 

missing data, which can be observed frequently in the voltage dataset. 

The main idea is that the voltage measurements from the AMI meters connected to the same service 

transformer secondary should be highly correlated and have a high correlation coefficient. Therefore, 

the key is to find a threshold to identify the potential incorrect records. If the correlation coefficient is 
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lower than the threshold, that means records are incorrect. The AMI meter to service transformer 

mapping procedure consists of the following steps: 

1) Calculate correlation coefficient between meters connected to the same service transformer for 

the records in the existing database. 

2) Rank the calculated correlation coefficients and pick a threshold. 

3) Loop through all the correlation coefficients and select the AMI records whose correlation 

coefficients are lower than the threshold. 

4) Calculate the correlation coefficients with the rest of the dataset and choose the service 

transformer with the highest score. 

5) Perform Step 4 for each meter in the selected set of records in Step 3. If the score is higher than 

the threshold, then correct the record to the new service transformer and meter pair, otherwise 

keep the record the same. 

For instance, consider that the correlation coefficient of AMI1 and AMI2 are lower than threshold 𝜏 in 

Figure 22, and they are connected to the service Transformer 1 in the original record. Then the 

algorithm will check the rest of the dataset to find a transformer with the highest correlation coefficient 

for both AMI1 and AMI2. If the score is higher than 𝜏 , then the algorithm will update the records. In this 

case, the mapping of AMI1 is changed to associate with Transformer 2 after running the algorithm. 

 

Figure 22. Illustration of the AMI meter to service transformer mapping algorithm 
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7.3.2 Results and Discussion 

Recall and precision are used to evaluate the performance of the proposed methodology. Recall 

evaluates the overall accuracy of the algorithm, and precision evaluates the accuracy of the correction. 

The equations below show the definition of recall and precision in mathematical formulas. In our case, 

the true positive is the right correction, the false positive is the wrong correction, and the false negative 

means the records remain the same as before. 

 

 

  
 

 

Three correlation coefficients namely Pearson [13], Kendall’s rank [14], and Spearman’s rank [15] are 

used in this work. These are defined as follows: 

The Pearson correlation coefficient is a measure of linear correlation between two sets of data. It is the 

ratio between the covariance of two variables and the product of their standard deviations. The Kendall 

rank correlation coefficient is a statistic used to measure the ordinal association between measured 

quantities. It is a measure of rank correlation and the similarity of the orderings of the data when ranked 

by each of the quantities. Spearman’s rank correlation coefficient is a nonparametric measure of rank 

correlation. It assesses how well the relationship between two variables can be described using a 

monotonic function. 

Tables 6, 7, and 8 below, show the results of the methodology with three different correlation 
coefficient calculation methods.  

Table 9 indicates that the Spearman correlation coefficient has the highest score in both recall and 
precision, and therefore fits the methodology best. All methods detect 97% of the incorrect records. 

Table 9 summarizes the overall comparison results. The category, “# of swap” means the total number 

of incorrect records which are randomly created to test the methodology. 

 
Table 6. Pearson correlation coefficient 

Test # of Swap Detection Correction Right Correction 

1 10 10 7 5 

2 15 15 8 8 

3 20 20 11 10 

4 25 24 15 12 

5 30 28 22 16 

Summary 100 97% 63% 51% 

 

𝑅(𝑟𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

𝑇𝑃 + 𝐹𝑁(𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

𝑃(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) =
𝑇𝑃(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

𝑇𝑃 + 𝐹𝑃(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
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Table 7. Spearman correlation coefficient 

Test # of Swap Detection Correction Right Correction 

1 10 10 7 5 

2 15 15 10 9 

3 20 20 12 10 

4 25 24 15 13 

5 30 28 23 17 

Summary 100 97% 67% 54% 

 

Table 8. Kendall correlation coefficient 

Test # of Swap Detection Correction Right Correction 

1 10 10 7 5 

2 15 15 11 10 

3 20 20 12 10 

4 25 24 16 13 

5 30 28 23 18 

Summary 100 97% 69% 56% 

 

Table 9. Method comparison 

Method Recall Precision 

Pearson 63% 80.95% 

Kendall 67% 80.60% 

Spearman 69% 81.16% 

 

7.3.3 Challenges 

In this exploratory task, our proposed algorithm detects almost all the incorrect records, achieves 

81.16% of precision, and 69% of recall with the least information. However, there is 30% of the 

detection that cannot be assigned with correct service transformers. This part needs to be addressed 

and will further improve the overall performance. 

7.4 Phase Identification using AMI Data 

An accurate phase connectivity database is needed for the utility distribution networks for efficient grid 

operations [16]. This requires periodic updates by field verification to keep the phase connectivity 

database accurate, which is an expensive and time-consuming process. A faster and less expensive 

method of estimating the phase connectivity is necessary.  
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The widespread deployment of AMI presents opportunities to develop applications for grid planning and 

operations using measurement data. The AMI data can be used for identifying the phase connectivity of 

each AMI meter. This process is referred to as phase identification. Existing phase identification 

techniques that estimate phase connectivity work well in distribution feeders that have low or no PV 

generation; however, they fail to identify the phases accurately when considerable PV generation is 

present [17]. Further, some existing phase identification approaches can perform phase identification for 

phase-to-neutral or phase-to-phase connection only. They cannot be applied to the distribution feeders 

having both phase-to-neutral and phase-to-phase connections. In this demonstration, a phase 

identification algorithm was used that can be applied to distribution feeders having a mix of phase-to-

neutral and phase-to-phase AMI meter connections. The algorithm used supervised machine learning to 

detect the phase connectivity accurately even in the presence of high PV penetration. The phase 

identification performance was validated on two feeders. The first feeder has a mix of phase-to-neutral 

and phase-to-phase AMI meter connectivity and nearly 70% PV level relative to the peak load. The 

second feeder has predominantly phase-to-neutral AMI meter connectivity, with very few service 

transformers having phase-to-phase connectivity. This feeder also has approximately 24% PV 

penetration relative to the peak load. 

7.4.1 Configuration and Methodology 

The key assumption in this study is that voltage profiles from AMI meters pertaining to each phase 

connectivity are highly correlated with each other. Thus, the voltage magnitude time series of the AMI 

meters that are on the same phase tend to exhibit similar variations in the voltage measurements which 

are different from the meters on the other phases. 

Phase Identification using Supervised Learning 

Phase identification was performed using the random forest classifier [18] [19]. The random forest 

classifier is a supervised machine learning model. In the phase identification process, first the voltage 

magnitude time series from each meter in the AMI dataset was obtained for a selected duration of time. 

Next, a preset percentage of meters were selected for each phase connectivity as a training dataset for 

the supervised machine learning algorithm. The phase connectivity of these meters must be accurate 

since this is part of the training process for the machine learning algorithm. Then a random forest 

classifier was constructed, which is a function that predicts the phase connectivity of each meter in the 

training dataset based on the voltage magnitude time series data. Finally, the trained random forest 

classifier was used to identify the phase connectivity of the rest of the meters in the AMI dataset based 

on their voltage magnitude time series. 

The phase identification algorithm steps are given below: 

1) Data preprocessing: Load the AMI dataset with the voltage magnitude time series data and 

perform data standardization. A small number of meters with consistently reported bad data or 

empty data were removed from the AMI dataset in this step. 

2) Training the random forest classifier: Select 30% of the AMI meters for each phase connectivity 

for training the random forest classifier. The phase connectivity of these AMI meters, obtained 



Application of Advanced Metering Infrastructure Data to Advanced Utility System Operations 

  

 

 30  

 

through field validation or some other means, was supplied to the random forest classifier in this 

step. 

3) Phase identification: Input the voltage magnitude time series data of the rest of the meters to 

the random forest classifier model trained in Step 2 to identify the phase connectivity of the rest 

of the meters in the AMI dataset. 

Data Requirements 

The phase identification algorithm in this demonstration used the voltage magnitude time series data of 

the AMI meters and the validated phase connectivity information for 30% of the meters in the AMI 

dataset for training. The AMI dataset had average, maximum, and minimum voltages for each meter at 

five-minute intervals. The five-minute average voltage magnitude data was used for phase identification. 

The inputs and output of this algorithm are summarized below: 

Inputs:  

• Average voltage magnitude time series data (preferably three months or more) for each AMI 

meter at five-minute resolution  

• Accurate phase connectivity information for 30% of the AMI meters for each type of phase 

connectivity 

Output:  

• A table with AMI meter ID and associated phase connectivity for all the AMI meters 

7.4.2 Results and Discussion 

The phase identification was performed on two of SDG&E’s feeders, namely Feeder A and Feeder B. Two 

AMI datasets are used for Feeder A. The first dataset has the AMI data of the three-month period 

between October 1, 2018 to December 31, 2018 (2018 dataset) and the second dataset has the AMI 

data for the entire 2019-year period. For Feeder B, the AMI data for the entire year of 2019 was used. 

The phase identification results of the two feeders are documented in this section.  

Distribution Feeder Details 

The first feeder used for the phase identification is Feeder A. This is a 12-kV feeder with a peak load of 

10.3 MW. The topology of the feeder is shown in Figure 23. The substation transformer is equipped with 

a load tap changer. Three capacitor banks are available on the feeder for reactive power support. The 

feeder serves more than 5,000 customers using 341 service transformers. Solar generation of 

approximately 70% relative to the peak load is present in this feeder. 
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Figure 23. Topology of Feeder A 

The second feeder used for the phase identification is Feeder B. This is also a 12-kV feeder with a peak 

load of 13.29 MW. The topology of the feeder is shown in Error! Reference source not found.4. The 

substation transformer is equipped with a load tap changer. Two capacitor banks are available on the 

feeder for reactive power support and there are no line voltage regulators. This feeder has 657 service 

transformers. Solar generation of 3.14 MW is present in this feeder which is approximately 24% relative 

to the peak load.  

 

Figure 24. Topology of Feeder B 
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Phase Identification in Feeder A using 2018 AMI Dataset 

Phase identification was performed on Feeder A first using the 2018 AMI dataset. This dataset has the 

average voltage magnitude time series data for 561 AMI meters for the three-month period between 

October 1, 2018 to December 31, 2018. The AMI data for two meters per service transformer were 

available in this dataset. Additionally, the field validated phasing information was also available for all the 

meters. Based on this information, the distribution of the phasing for the AMI meters is shown in Figure 

25.  

 

Figure 25. AMI meter phasing distribution in 2018 AMI dataset of Feeder A 

The phase identification results are shown in Figure 26. The field validated phasing information is 

considered as the ground truth. For each type of phase connectivity, the number of meters the 

algorithm identified as pertaining to that connectivity is shown against the ground truth. The results 

show the phase identification algorithm can identify all the types of phase connectivity accurately. 

 

Figure 26. Phase identification results of Feeder A using 2018 AMI dataset 

The detailed breakdown of the AMI meter counts in each of the training, testing, and full datasets of 

phase identification are shown in Table 10. For each type of phase connectivity, 30% of the meters are 

selected randomly along with their ground truth phase connectivity for the training dataset. The full 

dataset includes both the training and testing datasets together. With the phase connectivity identified 

accurately for 335 out of 391 meters in the testing set alone, the phase identification accuracy is 85.7% 

on the testing set. The phase identification accuracy on the training and full datasets are 100% and 90%, 

respectively. 
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Table 10. Summary of phase identification results of Feeder A using 2018 AMI dataset 

Dataset   
Phase Connectivity 

Total Accuracy 
A B C AB BC CA 

Full 
Ground truth 63 100 99 80 129 90 561 

90% 
Phase identification 53 96 96 60 122 78 505 

Testing 
Ground truth 43 67 70 57 92 62 391 

85.7% 
Phase identification 33 63 67 37 85 50 335 

Training 
Ground truth 20 33 29 23 37 28 170 

100% 
Phase identification 20 33 29 23 37 28 170 

 

The geographic distribution of the AMI meters for which the phase connectivity identified by the 

algorithm matched the ground truth is shown in Figure 27. The meters are distributed all over the 

feeder; thus, the algorithm can detect the correct phase connectivity in all the feeder neighborhoods. 

 

Figure 27. Locations of AMI meters for which the phase connectivity is identified correctly 

The locations of the AMI meters where the identified phase connectivity does not match the ground 

truth are shown in Figure 28. The correct phase connectivity according to the ground truth is shown in 

this figure at these locations. The mismatches are generally not clustered or constrained to any specific 

feeder neighborhoods. 
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Figure 28. Locations of AMI meters for which the phase connectivity is identified incorrectly 

Phase Identification in Feeder A using 2019 AMI Dataset 

The phase identification was also performed on Feeder A using the 2019 AMI dataset. This dataset has 

the average voltage magnitude time series data for 568 AMI meters for the full 2019-year period. The 

AMI data for two meters per service transformer were available in this dataset in addition to the field 

validated phasing information. The phase identification results are shown in Figure 29. The results are 

similar to those obtained using the 2018 AMI dataset and show that the phase identification algorithm 

can identify all the types of phase connectivity accurately. 

 

 

Figure 29. Phase identification results of Feeder A using 2019 AMI dataset 

The detailed breakdown of the AMI meter counts in each of the training, testing, and full datasets of 

phase identification are shown in TableError! Reference source not found. 11. For each type of phase 



Application of Advanced Metering Infrastructure Data to Advanced Utility System Operations 

  

 

 35  

 

connectivity, 30% of the meters were selected randomly along with their ground truth phase 

connectivity for the training dataset. The phase identification accuracies on the testing, training, and full 

datasets are 86.5%, 100%, and 90.5%, respectively. 

Table 11. Summary of phase identification results of Feeder A using 2019 AMI dataset. 

Dataset   
Phase Connectivity 

Total Accuracy 
A B C AB BC CA 

Full 
Ground truth 63 102 99 77 136 91 568 

90.5% 
Phase identification 55 98 98 56 126 81 514 

Testing 
Ground truth 45 72 70 54 96 64 401 

86.5% 
Phase identification 37 68 69 33 86 54 347 

Training 
Ground truth 18 30 29 23 40 27 167 

100% 
Phase identification 18 30 29 23 40 27 167 

 

The geographic distribution of the AMI meters for which the phase connectivity identified by the 

algorithm match the ground truth is shown in Figure 30. The meters are distributed all over the feeder; 

thus, the algorithm can detect the correct phase connectivity in all the feeder neighborhoods.  

 

Figure 30. Locations of AMI meters for which the phase connectivity is identified correctly 

The locations of the AMI meters where the identified phase connectivity does not match the ground 

truth are shown in Figure 31. The correct phase connectivity according to the ground truth is shown in 

this figure at these locations. 
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Figure 31. Locations of AMI meters for which the phase connectivity is identified incorrectly 

Phase Identification in Feeder B using 2019 AMI Dataset 

The phase identification algorithm was applied to the 2019 AMI dataset of Feeder B. This dataset has the 

average voltage magnitude time series data for 857 AMI meters for the full 2019-year period. The AMI 

data for two meters per service transformer were available in this dataset in addition to the field 

validated phasing information for these meters. The field validated phasing information was considered 

the ground truth. The phase identification results are shown in Figure 32. The ground truth phasing 

distribution in this figure indicates this feeder primarily has phase-to-neutral AMI phase connectivity. A 

small number of meters are connected to phase-to-phase. 

 

Figure 32. Phase identification results of Feeder B using 2019 AMI dataset 

The detailed breakdown of the AMI meter counts in each of the training, testing, and full datasets of 

phase identification are shown in Table 12. For each type of phase connectivity, 30% of the meters are 

selected randomly along with their ground truth phase connectivity for the training dataset. With the 
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phase connectivity identified accurately for 809 out of 857 meters in the testing set alone, the phase 

identification accuracy is 94.4% on the testing set. The phase identification accuracy on the training and 

full datasets are 100% and 92%, respectively. 

Table 12. Summary of phase identification results of Feeder B using 2019 AMI dataset 

Dataset   
Phase Connectivity 

Total Accuracy 
A B C AB BC CA 

Full 
Ground truth 268 310 251 17 1 10 857 

94.4% 
Phase identification 260 293 241 12 0 3 809 

Testing 
Ground truth 188 217 176 12 1 7 601 

92% 
Phase identification 180 200 166 7 0 0 553 

Training 
Ground truth 80 93 75 5 0 3 256 

100% 
Phase identification 80 93 75 5 0 3 256 

 

The geographic distribution of the AMI meters for which the predicted phase connectivity matches the 

ground truth is shown in Figure 33. The meters whose phase connectivity is identified correctly are 

distributed all over the feeder. This indicates the algorithm can detect the correct phase connectivity in 

all the feeder neighborhoods. 

 

Figure 33. Locations of AMI meters for which the phase connectivity is identified correctly 

The locations of the AMI meters where the identified phase connectivity does not match the ground 

truth are shown in Figure 34. The correct phase connectivity according to the ground truth is shown in 

this figure at these locations. The mismatches are generally not clustered or constrained to any specific 

feeder neighborhoods. 
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Figure 34. Locations of AMI meters for which the phase connectivity is identified incorrectly 

7.4.3 Challenges 

The lack of reasonably accurate data on the phase connectivity created issues in the algorithm 

configuration. Before the field verification, the algorithm configuration efforts primarily relied on the 

planning network model for the phase connectivity information. This consistently resulted in poor 

accuracies in any algorithm that was applied for phase identification. However, the field validated 

phasing information showed that the phase connectivity information in the planning network model is 

60% incorrect in the case of Feeder A. Thus, the poor performance of the algorithms attempted during 

this project phase could have been due to using the incorrect phase connectivity database as reference. 

7.5 Data-Centric Grid Operations 

AMI data analytics help develop insights into distribution network operation including service quality, 

power consumption patterns, presence of DERs, etc. In this task, interactive 3D and 2D tools useful for 

visualizing essential information from vast amounts of AMI data were developed. Figure 35 below shows 

sample 2D visualizations on the type and duration of the voltage exceedances and the potential EV 

locations on the SDG&E feeder, based on the AMI data. 
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Figure 35. Interactive 2D and 3D visualization tools 

AMI provides a new paradigm for utility planning, operations, and controls. The data captured by AMI 

can provide insights into the system dynamics at the grid edge. Utilities need tools to leverage this 

capability. In addition to AMI, utilities are also investing in the deployment of ADMS to prepare for future 

distribution operations with high levels of DERs. The ADMS is an integrated platform that combines the 

functionalities of distribution management systems, outage management systems, and SCADA systems 

for optimized distribution grid operations. Traditionally, the ADMS used the limited primary sensor 

measurements available on the distribution network through the SCADA system for network control 

decisions. With the availability of AMI measurements, there is significantly higher visibility, which can be 

leveraged for improved network monitoring and control. 
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7.5.1 Configuration and Methodology  

In the voltage prediction task that attempts to predict the voltage issues in the distribution network, an 

AMI voltage forecasting model was prototyped for the distribution feeder. The secondaries were 

modeled as having three AMI data points, with the closest and furthest to the transformer as individual 

data points and a third one that is an aggregate of all other power consumed on the secondary. 

Synthetic average hourly voltage data was simulated for three and a half months. Two machine learning 

algorithms were used in modeling voltage time series data which can be used for forecasting. The 

models are learned globally and simultaneously process all AMI time series data. Simulations with 

various scenarios of available historical data (60, 30, and 15 days) were performed which were explicitly 

incorporated into the model and evaluated for performance. The performance of a model hyper 

parameter set when forecasted 24-hours ahead is shown in Error! Reference source not found. 36. The 

plot represents an averaging over five-folds in the validation set. The model is evaluated globally on all 

simulated meters on the distribution feeder. 

 

Figure 36. Twenty-four-hour forecast performance of a hyperparameter run averaged over five folds 

The integration of ADMS and AMI measurements offers a unique opportunity to further modernize 

distribution system control. In this use case, an AMI-based data-driven volt/var control algorithm and its 

synergies with ADMS for distribution grid operations were evaluated using the SDG&E feeder and the 

AMI data. The inputs of this algorithm were AMI power and voltage measurements. The algorithm 

controls the LTC tap position, capacitor banks switches, and PV inverter setpoints to ensure voltage 

regulation.  

7.5.2 Results and Discussion  

Figure 37 and Figure 38 show the results from the evaluation of this algorithm. In the base case, the LTC 

and capacitor banks follow their local controllers, and the PV smart inverters inject power at unity power 

factor. In the unity power factor operation, the PV smart inverters inject active power only and no 

reactive power is injected or absorbed. As observed in Error! Reference source not found. 37, many 

customer voltages on the secondary are experiencing high voltage exceedances in the base case. In the 

next scenario in which the data-driven control algorithm is enabled, the voltage exceedances are 

significantly reduced, and the average voltages are closer to 1.0 PU Once the voltage deviates from the 

preset voltage regulation set point (selected 1.0 PU in this case), the algorithm primarily raises or lowers 

the LTC tap position to regulate the voltages as observed in Figure 38. 
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Figure 37. Comparison of Bus Voltages 
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Figure 38. Comparison of LTC, capacitor bank statuses, and total PV generation 
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7.5.3 Challenges 

The data-driven control demonstrated in this use case requires data from bellwether AMI meters every 

five minutes. The feasibility and scalability of this faster data reporting rate for real-time controls for all 

the feeders has not been explored. The utility control architecture to enable this new paradigm of grid 

operations is yet to be addressed. 

8.0 Findings 

8.1 Findings Discussion 

The key findings for each of the use cases are presented in the section below. 

8.1.1 PV Smart Inverter Study Key Findings 

The PV smart inverter study considered various smart inverter settings from the standards. The primary 

objective of applied advanced inverter functionality is to support system voltage compliance. The quasi-

static time-series simulation was performed for a period of 107 days with the different PV smart inverter 

settings enabled. When a node (bus) voltage magnitude exceeds the desirable range of 0.94 PU - 1.06 

PU, it is considered a voltage exceedance (VE). The voltage exceedance node (VEN) refers to the node 

that has more than 12 hours of cumulative voltage exceedance in the 107-day period.  

The voltage exceedance results are summarized in Table 13. Summary of voltage exceedances 

The results show when the PV smart inverters are not utilized for the voltage regulation in the baseline, 

a significant number of nodes on the primary and secondary can experience voltages beyond the 

desirable voltage range for prolonged periods of time. However, these voltage exceedances significantly 

dropped when the smart inverter settings were enabled. While there were minor differences in the 

resulting voltage improvement among the different smart inverter settings, generally superior voltage 

regulation was experienced when the PV smart inverter settings were enabled compared to when they 

were disabled. 

The volt-var curve slope is a key parameter influencing the voltage improvement. The Hockey Stick 2 

curve setting that has the most aggressive curve slope in the high voltage region resulted in the lowest 

VE hours per node on the secondary where the PV systems are installed. As the PV penetration is very 

high (70%) on this feeder, voltage rise during the peak PV generation was the major voltage regulation 

issue on this feeder. The HS2 curve, with the highest curve slope, forced the PV smart inverters to 

absorb the reactive power more intensely compared to the other smart inverter settings and resulted in 

better voltage regulation in such cases. 
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Table 13. Summary of voltage exceedances 

PV Smart Inverter 

Setting 

Secondary Primary 

VE hours per 

node 

Number of 

VEN 

VE hours per 

node 

Number of 

VEN 

Baseline 23.52 752 42.83 481 

CA 21 0.55 16 0.61 0 

HI 14 0.21 9 0.76 12 

IEEE 1547 0.47 28 0.96 14 

No Deadband 1.05 37 2.84 42 

HS1 0.55 16 0.61 0 

HS2 0.09 3 0.91 12 

Volt-Var-Watt 4.45 110 2.95 53 

 
The voltage regulation device operations per day are summarized in Table 14. The legacy device 

operation counts did not vary significantly with different PV smart inverter settings, except in the case of 

volt-var-watt setting. However, the volt-var-watt setting resulted in the highest number of voltage 

exceedances as shown in Table 14 compared to the other cases when the smart inverter settings were 

enabled. 

Table 14. Summary of legacy voltage regulation device operations 

PV Smart Inverter Setting LTC tap changes per day 
Capacitor bank status 

changes per day 

Baseline 12.07 5.25 

CA 21 12.47 6.04 

HI 14 13.75 5.03 

IEEE 1547 13.81 5.42 

No Deadband 13.03 5.66 

HS-no compensation 12.47 6.04 

HS-deeper Q 14.07 5.83 

Volt-Var-Watt 7.32 1.47 
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8.1.2 Utility Planning Network Model Anomaly Detection Key Findings 

Distribution planning and operations rely on accurate and reliable network models. There is a high 

degree of uncertainty involved in the distribution network modeling due to the changes in the network 

and loading conditions, lack of sufficient data, assumptions, and incorrect data, which impact the quality 

of network models. Further, traditional practice ignores modeling of secondary networks. As DER 

penetration levels increase, improving network model quality, including secondary becomes important. 

With the installation of AMI, more sensor measurement data is available which can be used for 

improving distribution network models and keeping them current. The utility planning network model 

anomaly detection tool developed in this project is a key step towards realizing this goal. 

The utility planning network model anomaly detection tool used both physics-based and machine 

learning-based methods. The physics-based method estimates the secondary network parameters using 

limited AMI measurement data. It then estimated the primary network voltages where the sensor data 

were not available. The machine learning-based method used the estimated primary voltages to build 

machine learning models for each service transformer secondary which can be used for subsequent 

estimations of the primary network voltages. Below are the key findings from this task: 

Physics-based Method 

The physics-based method used constrained optimization to estimate the secondary network 

parameters based on the AMI measurement data [20]. Existing approaches for this application assume 

that secondary topology is known, or the AMI data for all the customers on a given secondary is 

available. The fact that these two assumptions do not hold true introduced some initial difficulties in the 

algorithm configuration. Further, it was found that the AMI data used in this project do not include any 

information such as reactive power or the voltage angle needed to estimate the reactance of the 

secondary lines. It was found that the primary voltage estimates from the physics-based algorithm were 

consistently higher than the actual primary voltages from the simulations, likely due to the 

approximations made for the data that was unavailable. 

Machine Learning-based Method 

The machine learning-based method used random forest regression to build the equivalent machine 

learning models for each service transformer secondary [21]. While the primary voltage estimates from 

the machine learning models were fairly accurate, building these models requires primary voltage data 

as training data which is typically not available. Therefore, the primary voltage data from the physics-

based method was used as the training data for building the machine learning models. It was observed 

that the voltage estimates from the combined method that uses both the physics-based and machine 

learning-based methods accurately matched the primary voltages obtained from the simulations. 

Lack of Primary Sensor Data 

The primary network voltage data from selected primary buses was supposed to be collected according 

to the original plan. However, the primary meters were not installed due to some practical constraints. 

The tool validation process relied more on the simulations due to the lack of primary measurement data 

from the field. 
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8.1.3 Phase Identification Key Findings 

The phase identification algorithm identified and configured in this study focused on achieving high 

phase identification accuracy levels on two distribution feeders. A few key parameters were influential in 

the selection of the algorithm and the accuracy of the phase identification results. These parameters are 

discussed in this section. 

Circuit Connectivity 

A distribution feeder can have phase-to-neutral connections AN, BN, and CN (also known or referred to 

as A, B, and C), and/or phase-to-phase connections, AB, BC, and CA. They also consist of single-phase 

and two-phase branches and connections. Some of the existing phase identification algorithms, 

specifically those based on the correlation and linear regression analysis, work only for the feeders 

having phase-to-neutral connections. When a feeder has a mix of phase-to-neutral and phase-to-phase 

connections, the voltage dependencies among the phases can be a challenge for the phase identification 

algorithm. For example, some level of voltage dynamics occurring on phase A can be seen by the meters 

connected to AB. When these interdependencies are high, the algorithm can incorrectly represent the 

phase connectivity. 

The phase connectivity details of the two feeders in this study and the associated phase identification 

results are summarized in Table 15. The numbers represent the AMI meter counts associated with a 

given type of phase connectivity. The first feeder has high meter counts for all six phase connections. 

The second feeder has all six phase connections, most of the meters have phase-to-neutral connection. 

In all instances the phase identification results show high accuracy. 

 
Table 15. Phase connectivity details and phase identification results of two feeders 

Feeder   
Phase Connectivity 

Total Accuracy 
A B C AB BC CA 

Feeder 1 
Ground truth 63 102 99 77 136 91 568 

90.5% 
Phase identification result 55 98 98 56 126 81 514 

Feeder 2 
Ground truth 268 310 251 17 1 10 857 

94.4% 
Phase identification result 260 293 241 12 0 3 809 

 

Data Availability 

The type of data available significantly influences the type of phase identification algorithm that is 

chosen for use. Some phase identification algorithms based on correlation analysis require voltage 

measurements from the substation SCADA. Specifically, phase-to-neutral and/or phase-to-phase voltage 

measurements at the feeder head are required depending on the meter connections present in the 

feeder. However, typically utilities record either phase-to-neutral or phase-to-phase voltage only at the 

substation. If only phase-to-phase voltage is collected for a feeder having a mix of six phase connections, 

these algorithms cannot be applied. In this project, only the phase-to-phase voltage measurement data 

at the feeder head was available in the substation SCADA data, while the studied feeders have all the six 



Application of Advanced Metering Infrastructure Data to Advanced Utility System Operations 

  

 

 47  

 

possible combinations of phase connections. As such, the correlation-based algorithms that depend on 

voltage measurement data from the substation SCADA could not be applied in this case. 

The electrical quantities that the AMI meters measure also influence the choice of algorithm. Some 

regression-based algorithms require availability of both voltage magnitude and power consumption data 

from all the AMI meters connected to the service transformers. These algorithms cannot be applied if all 

customers do not have AMI meters because the voltage data from some customers would be missing. 

PV Penetration Level 

Most of the existing phase identification algorithms use voltage time series data. In particular, the 

voltage variations during a selected time period are the basis for determining the phase connectivity for 

these algorithms. Since the voltages are significantly influenced by the PV power generation, these 

algorithms may fail to identify the phase connectivity accurately. While this may not be an issue for 

some feeders having low PV penetration levels, this parameter should be considered for the feeders 

with high PV penetration.  

Both the feeders used in this project have significant levels of PV generation. The PV penetration levels 

are 70% and 24% relative to the peak load for these feeders. The phase identification algorithm 

configured and tailored for the application in this project worked well for both these feeders, signifying 

its robustness to the PV penetration levels. 

GIS Data Quality 

It is a common practice to provide the known information about the distribution network to the phase 

identification algorithms to accomplish high accuracy levels. Specifically, the expected number of phase 

connections is supplied to the clustering algorithms as an input and the network topology information is 

used as constraints to obtain better phase mapping. However, the phase connectivity information in the 

GIS can sometimes be significantly inaccurate. More than 50% of the AMI meters were observed to be 

on different phases in the field validated data as compared to the GIS database in this project. When 

such high phase connectivity inaccuracies exist in the GIS, using such data as an input can result in poor 

phase identification results. 

Bad Data 

AMI measurement data is not perfect. In addition to the standard measurement errors, some AMI 

meters can report completely unreasonable data. The bad data should be identified and removed from 

the phase identification process. Otherwise, the bad data can lower the phase identification accuracy 

depending on the algorithm. Some phase identification algorithms, specifically those based on 

clustering, can identify the bad data without requiring additional processing. 

Training Data 

The type of algorithm used depends on many parameters including the type of phase connections 

present, data availability, and DER penetration levels as mentioned earlier. While unsupervised learning 

techniques are known to provide good phase identification results, such performance requires specific 

feeder characteristics. When the phase identification algorithm must work well for a wide variety of 

feeders, supervised learning is a better option. The training data provided to the supervised learning 
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algorithm can supply information specific to each feeder to make it robust. As a result, the supervised 

learning algorithms can provide consistently high accuracy levels in the phase identification for many 

feeders. Note that obtaining the required training data may involve some level of field verification. 

8.1.4 AMI Data-Centric Distribution System Operations: 

Model-free controls 

The demonstration of a data-driven method for voltage control for a feeder with high PV penetration 

with data from less than 10% of the meters on the feeder, proved feasible and practicable as a method 

for future adoption. The model-free controls also demonstrate that these methods can perform without 

an impedance model, and hence are more resilient to model quality errors including missing feeder 

data. 

Pervasive Secondary Monitoring 

This use case demonstrated how even if the voltages on the primary network are within the ANSI voltage 

limits (+/- 5%), the secondary networks might see voltages that are beyond these desired limits due to 

the presence of PV and the lack of accurate models to represent the secondary networks. By using AMI 

voltages as input for voltage control, these methods can maintain desired voltage on the secondary 

networks as well, thereby enabling pervasive secondary network monitoring.  

Uncertainties from PV output 

The method demonstrated in this use case does not require explicit modeling of PV systems or their 

outputs, but only the voltages as measured by the AMI meters. This obviates the need for detailed PV 

modeling for this voltage control algorithm, making it suitable for feeders with presence of high PV 

adoptions. 

8.1.5 Meter-to-Transformer Mapping 

In this exploratory task, the project team identified some key methods for mapping AMI meters to the 

correct service transformer. The project team identified recall and precision as two metrics for validating 

the performance of these methods. The Spearman correlation coefficient [13] had the highest score in 

both recall and precision. Therefore, it fits the proposed meter-to-transformer methodology best. All 

methods detected 97% of the incorrect records. 

8.2 Updated Value Proposition 

In this project, tools to benefit utilities in upgrading the distribution planning and operation practices 

were demonstrated. Specifically, the utility planning network model anomaly detection tool helps 

estimate the primary voltage based on secondary AMI data. The estimated primary voltage provides 

visibility of the primary network where the physical voltage sensors do not exist. Further, the estimated 

primary voltage based on AMI data was used to identify inaccuracies in the planning network models. 

The demonstration of the phase identification tool indicated that customer phase connectivity can be 

identified based on AMI data. Additionally, numerous simulations were performed using distribution 

feeder models developed based on AMI data from the field to develop insights into PV smart inverter 

settings.  
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The tools and demonstrations performed in this project promote and support the initial benefits and 

value proposition of greater reliability, lower costs, and increased safety as described in Section 6.0.  

Further, this project promotes the following additional benefits:  

Societal Benefits 

This project helps correct the distribution network models used for planning and operations. The 

improved network models lead to more efficient control decisions, and reduction in losses and outages. 

The smart inverter study lowers the cost of network operations by deferring the investments to maintain 

the desired electric service quality. Overall, this project shows potential to reduce the overall cost of 

electric service to customers. 

Greenhouse Gas (GHG) Emissions Reduction 

The efficient PV smart inverter settings may increase the PV hosting capacity of the distribution feeders, 

allowing more renewable generation. Improved phase balancing, volt/var optimization and other 

network controls based on the accurate network models further support the higher levels of renewable 

generation. The tools developed in this project are collectively geared toward reducing the dependence 

on traditional fossil fuels for our energy needs, thus lowering the associated GHG emissions. As noted in 

the initial benefits analysis, reducing travel associated with field visits/field verification, would also 

reduce GHG emissions in commercial use of the demonstrated tools.  

Economic Development 

This project demonstrated that the AMI data can be used for phase identification and distribution 

network model improvements. By developing use cases for the AMI, this project promotes the 

deployment of AMI and the associated communication infrastructure. Thus, it influences the market for 

the development of advanced sensing and communication capabilities. Further, the PV smart inverter 

study enables higher levels of DER adoption through efficient voltage control. With the higher levels of 

DER and availability of communication networks the DERs can participate in grid services with suitable 

incentives to customers. This project paves the way for future AMI-based distribution network 

operations that promote efficient use of renewable energy, where both the utility and customers 

economically benefit from the services provided. 

Efficient Use of Ratepayer Funds 

This project developed a phase identification tool that performs automated customer phase mapping 

based on AMI data. Traditionally, utilities perform the same task manually by sending a crew to the field 

for the identification of the customer phasing. This manual process, performed periodically, is expensive 

and time-consuming. The phase identification tool greatly simplifies this process and determines the 

customer phase connectivity more economically, thus providing savings for the ratepayers. The PV smart 

inverter results may help achieve the desired power quality using existing smart inverters without having 

to invest in network upgrades. This approach has the potential to reduce the cost of electric service 

which in turn benefits ratepayers through lower electricity bills. 
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9.0 Conclusions 

This project demonstrated a utility planning network model anomaly detection tool, a phase 

identification tool, a meter to transformer mapping algorithm proof-of-concept and analyzed the 

impacts of PV smart inverter settings. The tools used AMI measurement data to estimate the primary 

voltages, identify planning model inaccuracies, and automate phase mapping. With the tool’s promising 

results, the SDG&E team is currently examining deployment opportunities. 

Several issues in the GIS data planning network models, and the AMI measurement data were detected 

during the algorithm development. These issues are related to the incorrect phase connectivity 

information; approximated load and PV profiles used in the planning network models; lack of reactive 

power measurements in the AMI data; and desirable voltages from SCADA. Additionally, using the AMI 

data from only two AMI meters per transformer and the lack of primary voltage measurement data from 

the field, created challenges in the algorithm development and validation. The selected feeders have 

significantly different characteristics in terms of phase connectivity, high PV penetration levels, and 

presence of underground cables. This provided an opportunity to develop algorithms that are sufficiently 

robust to the feeder characteristics. In the PV penetration study, it was observed that enabling the PV 

smart inverter settings is desirable for improving the network voltage profile. The selection of feeders 

with different characteristics also highlighted the disconnect between the voltage dynamics on the 

primary and secondary networks. 

As the AMI deployments increase and more measurement data becomes available, leveraging the AMI 

data for the distribution system planning and operations is desirable. Relying on the automated AMI 

data analytics for this purpose instead of the network models is more economical and efficient as it 

reduces the time and effort in the manual periodic field verifications and database updates. This 

project’s results indicate the desirability of shifting from the traditional model-based grid operations to 

data-driven grid operations. 

10.0  Transfer Plan 

10.1 Project Results Dissemination 

This report is the primary documentation of this project work. It will be posted on the SDG&E’s EPIC 

public website and filed with the California Public Utilities Commission. 

The results from the project were presented in multiple conferences through peer-reviewed technical 

papers. The following is the list of papers developed under this project: 

Published Papers: 

1) J. Wang, H. Padullaparti, S. Veda, M. Baggu, M. Symko-Davies, A. Salmani, and T. Bialek, “A 

Machine Learning-based Method to Estimate Transformer Primary-Side Voltages with Limited 

Customer-Side AMI Measurements,” in IEEE Power & Energy Society General Meeting (PESGM), 

2021. 
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2) M. Netto, J. Hao, H. Padullaparti, and V. Krishnan, “On the Use of Smart Meter Data to Estimate 

the Voltage Magnitude on the Primary Side of Distribution Service Transformers,” in IEEE Power 

& Energy Society General Meeting (PESGM), 2021. 

3) H. Padullaparti, S. Veda, S. Dhulipala, M. Baggu, T. Bialek and M. Symko-Davies, “Considerations 

for AMI-Based Operations for Distribution Feeders,” in IEEE Power & Energy Society General 

Meeting (PESGM), Atlanta, GA, USA, 2019, pp. 1-5. 

The project results were also disseminated to the industry through NREL’s ADMS Test Bed and DERMS 

Applications Industry Advisory Board (IAB) through quarterly meetings, webinars and a workshop held in 

October 2020. The following are the meetings where the project results were discussed. 

• NREL hosted two virtual workshops that were held on November 9th and 10th, 2020. The title of 

the event was Advanced Distribution Management System Test Bed and Architectures for Grid-

Edge Management Workshops. The event brought over 70 external participants from 45 

organizations. This was the best attended ADMS workshop to date.  

• NREL hosted a virtual IAB meeting on April 29, 2021. The focus was on Peak Load Management 

(PLM) and AMI for operations use cases. We also launched a series of webinars beginning with 

the Peak Load Management use case in June 2021.  

• NREL hosted a virtual IAB meeting on July 22, 2021. We focused on the AMI-based, data-centric 

grid operations and ADMS network model quality impact on VVO use cases. We also presented 

the process for identifying future use cases, including an overview of the RFI.  

• NREL continued the series of webinars with a presentation by Dr. Santosh Veda focused on AMI 

data data-centric planning and operations that showcased results from this project on October 

6, 2021. This webinar had over 75 participants. 

10.2 Transition for Commercial Use 

The demonstrations performed in this project were supported by the Electric Program Investment 

Charge, a public purpose program funded by ratepayers of California’s investor-owned utilities, and by 

the US Department of Energy funding to NREL. These tools were then tested, validated, and 

demonstrated on real-world utility feeders provided by SDG&E. As discussed in Section 6, some of these 

tools were further validated using field verification. These tools are being examined for opportunities for 

deployment on SDG&E’s AMI data system. The architecture for implementing these tools is shown in 

Figure 39 below. 
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Figure 39. Architecture for potential deployment on SDG&E AMI data collection system 

 

In addition, a subset of these tools will also be released as open-source tools for use by the industry 

and research for further improvement by the community at large. 

11.0 Recommendations 

The use cases presented in this project demonstrate the accuracy, feasibility, and rationality of using 

AMI data for greatly improving the planning and operations activities in the near-term, especially for 

feeders with high levels of PV adoption. It is recommended that specific tools (Utility Planning Network 

Model Anomaly Detection Tool, AMI Meter-to-Transformer Mapping, and Phase Identification Using 

AMI Data) be applied by the SDG&E team for other feeders. The evaluation of data-driven controls 

using realistic emulation capabilities of the ADMS Test bed provides a feasible demonstration for real-

time data-driven control of high-PV feeders for consideration and implementation in the medium-

term. Such an approach could reduce the reliance on planning models and make the operations 

resilient to the ubiquitous problem of poor model quality. 

SDG&E will need to identify a stakeholder group within the company to lead this commercial adoption 

process.  
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